Suppr超能文献

BFI-10和NEO-FFI-3在印度青少年中的心理测量评估。

Psychometric Evaluation of the BFI-10 and the NEO-FFI-3 in Indian Adolescents.

作者信息

Kunnel John Roshin, Xavier Boby, Waldmeier Anja, Meyer Andrea, Gaab Jens

机构信息

Division of Clinical Psychology and Psychotherapy, Faculty of Psychology, University of Basel, Basel, Switzerland.

Division of Clinical Psychology and Epidemiology, Faculty of Psychology, University of Basel, Basel, Switzerland.

出版信息

Front Psychol. 2019 May 9;10:1057. doi: 10.3389/fpsyg.2019.01057. eCollection 2019.

Abstract

The Five-Factor Model (FFM) is one of the most commonly examined constructs of personality across cultures in recent times. However, there is a lacuna of evidence for the suitability of FFM measures for Indian adolescent school students below the age of 17 years. We carried out two independent studies for the psychometric evaluation of the measures BFI-10 and NEO-FFI-3 on Indian adolescent school students. Both studies examined two socio-culturally distinct linguistic groups of secondary and senior secondary school students with a total sample of = 1117 students. There was very limited support for a five-factor solution in both cases. Model fit was poor when applying FFM measures to our samples, whether applying confirmatory factor analysis or exploratory structural equation models. The results provide evidence against using adult personality measures with adolescents without separate psychometric validation and applying the Western age norms to Indian students without considering that the process of personality consolidation during adolescence may not be identical across cultures.

摘要

五因素模型(FFM)是近年来跨文化研究中最常被检验的人格结构之一。然而,对于17岁以下印度青少年学生而言,缺乏证据表明FFM测量方法适用于他们。我们针对印度青少年学生对大五人格量表简版(BFI-10)和大五人格量表第三版(NEO-FFI-3)进行了两项独立的心理测量学评估研究。两项研究均考察了社会文化背景不同的两组学生,即初中生和高中生,总样本量为1117名学生。在这两种情况下,支持五因素模型的证据都非常有限。将FFM测量方法应用于我们的样本时,无论是采用验证性因素分析还是探索性结构方程模型,模型拟合度都很差。研究结果表明,在未进行单独心理测量学验证的情况下,不应将成人人格测量方法用于青少年,也不应在未考虑到不同文化中青少年人格巩固过程可能不同的情况下,将西方年龄标准应用于印度学生。

相似文献

5
Exploratory structural equation modeling of personality data.人格数据的探索性结构方程建模
Assessment. 2014 Jun;21(3):260-71. doi: 10.1177/1073191114528029. Epub 2014 Mar 28.

引用本文的文献

2
The TikTok Addiction Scale: Development and validation.TikTok成瘾量表:编制与验证
AIMS Public Health. 2024 Dec 11;11(4):1172-1197. doi: 10.3934/publichealth.2024061. eCollection 2024.
5
The fundamentals of Indian personality: An investigation of the big five.印度人格的基本要素:对大五人格的调查
Indian J Psychiatry. 2023 Oct;65(10):1052-1060. doi: 10.4103/indianjpsychiatry.indianjpsychiatry_577_23. Epub 2023 Oct 16.
8
Susceptibility to default effects does not differ by age.默认效应易感性不因年龄而异。
J Exp Psychol Gen. 2023 Apr;152(4):1175-1187. doi: 10.1037/xge0001317. Epub 2022 Nov 10.

本文引用的文献

4
Psychometric evaluation of responses to the NEO-PI-3 in a multi-ethnic sample of adults in India.
Psychol Assess. 2015 Dec;27(4):1253-63. doi: 10.1037/pas0000135. Epub 2015 May 4.
5
Indian family systems, collectivistic society and psychotherapy.印度家庭系统、集体主义社会与心理治疗。
Indian J Psychiatry. 2013 Jan;55(Suppl 2):S299-309. doi: 10.4103/0019-5545.105555.
9
An introduction to modern missing data analyses.现代缺失数据分析简介。
J Sch Psychol. 2010 Feb;48(1):5-37. doi: 10.1016/j.jsp.2009.10.001.
10
Maturation of personality in adolescence.青少年期人格的成熟
J Pers Soc Psychol. 2009 Apr;96(4):898-912. doi: 10.1037/a0014746.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验