Suppr超能文献

重新审视遗传毒理学中DNA损伤检测方法:见解与监管意义

Revisiting the approaches to DNA damage detection in genetic toxicology: insights and regulatory implications.

作者信息

Alnasser Sulaiman Mohammed

机构信息

Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.

出版信息

BioData Min. 2025 May 6;18(1):33. doi: 10.1186/s13040-025-00447-8.

Abstract

Genetic toxicology is crucial for evaluating the potential risks of chemicals and drugs to human health and the environment. The emergence of high-throughput technologies has transformed this field, providing more efficient, cost-effective, and ethically sound methods for genotoxicity testing. It utilizes advanced screening techniques, including automated in vitro assays and computational models to rapidly assess the genotoxic potential of thousands of compounds simultaneously. This review explores the transformation of traditional in vitro and in vivo methods into computational models for genotoxicity assessment. By leveraging advances in machine learning, artificial intelligence, and high-throughput screening, computational approaches are increasingly replacing conventional methods. Coupling conventional screening with artificial intelligence (AI) and machine learning (ML) models has significantly enhanced their predictive capabilities, enabling the identification of genotoxicity signatures tied to molecular structures and biological pathways. Regulatory agencies increasingly support such methodologies as humane alternatives to traditional animal models, provided they are validated and exhibit strong predictive power. Standardization efforts, including the establishment of common endpoints across testing approaches, are pivotal for enhancing comparability and fostering consensus in toxicological assessments. Initiatives like ToxCast exemplify the successful incorporation of HTS data into regulatory decision-making, demonstrating that well-interpreted in vitro results can align with in vivo outcomes. Innovations in testing methodologies, global data sharing, and real-time monitoring continue to refine the precision and personalization of risk assessments, promising a transformative impact on safety evaluations and regulatory frameworks.

摘要

遗传毒理学对于评估化学品和药物对人类健康及环境的潜在风险至关重要。高通量技术的出现改变了这一领域,为遗传毒性测试提供了更高效、更具成本效益且符合伦理道德的方法。它利用先进的筛选技术,包括自动化体外试验和计算模型,来同时快速评估数千种化合物的遗传毒性潜力。本综述探讨了传统体外和体内方法向遗传毒性评估计算模型的转变。通过利用机器学习、人工智能和高通量筛选的进展,计算方法正越来越多地取代传统方法。将传统筛选与人工智能(AI)和机器学习(ML)模型相结合,显著增强了它们的预测能力,能够识别与分子结构和生物途径相关的遗传毒性特征。监管机构越来越支持这些方法,将其作为传统动物模型的人道替代方法,前提是它们经过验证且具有强大的预测能力。标准化工作,包括在各种测试方法中建立共同的终点,对于提高毒理学评估的可比性和促进达成共识至关重要。像ToxCast这样的项目例证了将高通量筛选数据成功纳入监管决策,表明经过良好解读的体外结果可以与体内结果一致。测试方法、全球数据共享和实时监测方面的创新继续提高风险评估的精度和个性化程度,有望对安全评估和监管框架产生变革性影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验