Suppr超能文献

基于单变量和多变量条件下有相关性的工具变量法,使用汇总统计量的孟德尔随机化的贝叶斯方法。

A Bayesian approach to Mendelian randomization using summary statistics in the univariable and multivariable settings with correlated pleiotropy.

机构信息

MRC Biostatistics Unit, University of Cambridge, Cambridge, UK; Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia.

MRC Biostatistics Unit, University of Cambridge, Cambridge, UK; Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK.

出版信息

Am J Hum Genet. 2024 Jan 4;111(1):165-180. doi: 10.1016/j.ajhg.2023.12.002.

Abstract

Mendelian randomization uses genetic variants as instrumental variables to make causal inferences on the effect of an exposure on an outcome. Due to the recent abundance of high-powered genome-wide association studies, many putative causal exposures of interest have large numbers of independent genetic variants with which they associate, each representing a potential instrument for use in a Mendelian randomization analysis. Such polygenic analyses increase the power of the study design to detect causal effects; however, they also increase the potential for bias due to instrument invalidity. Recent attention has been given to dealing with bias caused by correlated pleiotropy, which results from violation of the "instrument strength independent of direct effect" assumption. Although methods have been proposed that can account for this bias, a number of restrictive conditions remain in many commonly used techniques. In this paper, we propose a Bayesian framework for Mendelian randomization that provides valid causal inference under very general settings. We propose the methods MR-Horse and MVMR-Horse, which can be performed without access to individual-level data, using only summary statistics of the type commonly published by genome-wide association studies, and can account for both correlated and uncorrelated pleiotropy. In simulation studies, we show that the approach retains type I error rates below nominal levels even in high-pleiotropy scenarios. We demonstrate the proposed approaches in applied examples in both univariable and multivariable settings, some with very weak instruments.

摘要

孟德尔随机化使用遗传变异作为工具变量,对暴露对结局的影响进行因果推断。由于最近高通量全基因组关联研究的大量出现,许多有潜在因果关系的暴露因素都有大量独立的遗传变异与之相关联,每个变异都代表着一种潜在的工具变量,可用于孟德尔随机化分析。这种多基因分析增加了研究设计检测因果效应的能力;然而,它们也增加了由于工具无效而导致偏差的可能性。最近人们开始关注由相关多效性引起的偏差,这是由于违反了“工具强度独立于直接效应”的假设。尽管已经提出了可以解决这种偏差的方法,但在许多常用技术中仍然存在许多限制条件。在本文中,我们提出了一种孟德尔随机化的贝叶斯框架,在非常一般的情况下提供有效的因果推断。我们提出了 MR-Horse 和 MVMR-Horse 方法,这些方法可以在不访问个体水平数据的情况下使用,只使用全基因组关联研究通常公布的汇总统计信息,并且可以同时考虑相关和不相关的多效性。在模拟研究中,我们表明即使在高多效性情况下,该方法也能保持低于名义水平的Ⅰ型错误率。我们在单变量和多变量环境中的应用示例中展示了所提出的方法,其中一些方法的工具变量非常弱。

相似文献

2
Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression.
Int J Epidemiol. 2015 Apr;44(2):512-25. doi: 10.1093/ije/dyv080. Epub 2015 Jun 6.
3
MRBEE: A bias-corrected multivariable Mendelian randomization method.
HGG Adv. 2024 Jul 18;5(3):100290. doi: 10.1016/j.xhgg.2024.100290. Epub 2024 Apr 6.
4
Bayesian weighted Mendelian randomization for causal inference based on summary statistics.
Bioinformatics. 2020 Mar 1;36(5):1501-1508. doi: 10.1093/bioinformatics/btz749.
6
Weak and pleiotropy robust sex-stratified Mendelian randomization in the one sample and two sample settings.
Genet Epidemiol. 2023 Mar;47(2):135-151. doi: 10.1002/gepi.22512. Epub 2023 Jan 22.
7
Bayesian variable selection with a pleiotropic loss function in Mendelian randomization.
Stat Med. 2021 Oct 15;40(23):5025-5045. doi: 10.1002/sim.9109. Epub 2021 Jun 21.
8
Extending Causality Tests with Genetic Instruments: An Integration of Mendelian Randomization with the Classical Twin Design.
Behav Genet. 2018 Jul;48(4):337-349. doi: 10.1007/s10519-018-9904-4. Epub 2018 Jun 7.
9
Pleiotropy robust methods for multivariable Mendelian randomization.
Stat Med. 2021 Nov 20;40(26):5813-5830. doi: 10.1002/sim.9156. Epub 2021 Aug 2.
10
Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption.
Int J Epidemiol. 2017 Dec 1;46(6):1985-1998. doi: 10.1093/ije/dyx102.

引用本文的文献

1
Causal mediation analysis for time-varying heritable risk factors with Mendelian randomization.
Nat Commun. 2025 Jul 28;16(1):6945. doi: 10.1038/s41467-025-61648-7.
4
Drug-target Mendelian randomisation applied to metabolic dysfunction-associated steatotic liver disease: opportunities and challenges.
eGastroenterology. 2024 Oct 4;2(4):e100114. doi: 10.1136/egastro-2024-100114. eCollection 2024 Oct.
5
Unbiased causal inference with Mendelian randomization and covariate-adjusted GWAS data.
HGG Adv. 2025 Apr 10;6(2):100412. doi: 10.1016/j.xhgg.2025.100412. Epub 2025 Jan 30.
8
Potential of gut microbiota metabolites in treating COPD: network pharmacology and Mendelian randomization approaches.
Front Microbiol. 2024 Nov 25;15:1416651. doi: 10.3389/fmicb.2024.1416651. eCollection 2024.

本文引用的文献

1
MVMRmode: Introducing an R package for plurality valid estimators for multivariable Mendelian randomisation.
PLoS One. 2024 May 7;19(5):e0291183. doi: 10.1371/journal.pone.0291183. eCollection 2024.
2
Robust multivariable Mendelian randomization based on constrained maximum likelihood.
Am J Hum Genet. 2023 Apr 6;110(4):592-605. doi: 10.1016/j.ajhg.2023.02.014. Epub 2023 Mar 21.
4
Noise-augmented directional clustering of genetic association data identifies distinct mechanisms underlying obesity.
PLoS Genet. 2022 Jan 27;18(1):e1009975. doi: 10.1371/journal.pgen.1009975. eCollection 2022 Jan.
6
Pleiotropy robust methods for multivariable Mendelian randomization.
Stat Med. 2021 Nov 20;40(26):5813-5830. doi: 10.1002/sim.9156. Epub 2021 Aug 2.
7
Testing and correcting for weak and pleiotropic instruments in two-sample multivariable Mendelian randomization.
Stat Med. 2021 Nov 10;40(25):5434-5452. doi: 10.1002/sim.9133. Epub 2021 Aug 2.
9
Causal inference for heritable phenotypic risk factors using heterogeneous genetic instruments.
PLoS Genet. 2021 Jun 22;17(6):e1009575. doi: 10.1371/journal.pgen.1009575. eCollection 2021 Jun.
10
The trans-ancestral genomic architecture of glycemic traits.
Nat Genet. 2021 Jun;53(6):840-860. doi: 10.1038/s41588-021-00852-9. Epub 2021 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验