Princeton University, Princeton, New Jersey, USA
Princeton University, Princeton, New Jersey, USA.
Appl Environ Microbiol. 2019 Jul 18;85(15). doi: 10.1128/AEM.00560-19. Print 2019 Aug 1.
The prevalence of microbial life in permafrost up to several million years (Ma) old has been well documented. However, the long-term survivability, evolution, and metabolic activity of the entombed microbes over this time span remain underexplored. We integrated aspartic acid (Asp) racemization assays with metagenomic sequencing to characterize the microbial activity, phylogenetic diversity, and metabolic functions of indigenous microbial communities across a ∼0.01- to 1.1-Ma chronosequence of continuously frozen permafrost from northeastern Siberia. Although Asp in the older bulk sediments (0.8 to 1.1 Ma) underwent severe racemization relative to that in the youngest sediment (∼0.01 Ma), the much lower d-Asp/l-Asp ratio (0.05 to 0.14) in the separated cells from all samples suggested that indigenous microbial communities were viable and metabolically active in ancient permafrost up to 1.1 Ma. The microbial community in the youngest sediment was the most diverse and was dominated by the phyla and In contrast, microbial diversity decreased dramatically in the older sediments, and anaerobic, spore-forming bacteria within became overwhelmingly dominant. In addition to the enrichment of sporulation-related genes, functional genes involved in anaerobic metabolic pathways such as fermentation, sulfate reduction, and methanogenesis were more abundant in the older sediments. Taken together, the predominance of spore-forming bacteria and associated anaerobic metabolism in the older sediments suggest that a subset of the original indigenous microbial community entrapped in the permafrost survived burial over geological time. Understanding the long-term survivability and associated metabolic traits of microorganisms in ancient permafrost frozen millions of years ago provides a unique window into the burial and preservation processes experienced in general by subsurface microorganisms in sedimentary deposits because of permafrost's hydrological isolation and exceptional DNA preservation. We employed aspartic acid racemization modeling and metagenomics to determine which microbial communities were metabolically active in the 1.1-Ma permafrost from northeastern Siberia. The simultaneous sequencing of extracellular and intracellular genomic DNA provided insight into the metabolic potential distinguishing extinct from extant microorganisms under frozen conditions over this time interval. This in-depth metagenomic sequencing advances our understanding of the microbial diversity and metabolic functions of extant microbiomes from early Pleistocene permafrost. Therefore, these findings extend our knowledge of the survivability of microbes in permafrost from 33,000 years to 1.1 Ma.
在长达数百万年的时间里,已充分记录了在永冻层中微生物生命的流行。然而,在这段时间内,被埋葬的微生物的长期生存能力、进化和代谢活性仍未得到充分探索。我们将天冬氨酸(Asp)外消旋测定与宏基因组测序相结合,以描述来自西伯利亚东北部的连续冻结永冻土的约 0.01 到 1.1 Ma 时间序列中土著微生物群落的微生物活性、系统发育多样性和代谢功能。尽管较老的大块沉积物(0.8 到 1.1 Ma)中的 Asp 相对于最年轻的沉积物(约 0.01 Ma)经历了严重的外消旋,但所有样品中分离细胞的低得多的 d-Asp/l-Asp 比值(0.05 到 0.14)表明,土著微生物群落在古老的永冻土中是有活力且代谢活跃的,可达 1.1 Ma。最年轻沉积物中的微生物群落是最多样化的,主要由门和 组成。相比之下,较老沉积物中的微生物多样性急剧下降,而 中的厌氧、孢子形成细菌则占绝对优势。除了富集与孢子形成相关的基因外,在较老的沉积物中还发现了更多参与厌氧代谢途径的功能基因,如发酵、硫酸盐还原和产甲烷作用。总的来说,在较老的沉积物中,孢子形成细菌的优势及其相关的厌氧代谢表明,在永冻土中被捕获的原始土著微生物群落的一部分在地质时间的埋藏过程中幸存下来。了解数百万年前在古老的永冻土中微生物的长期生存能力和相关代谢特征,为了解由于永冻土的水文隔离和特殊的 DNA 保存而在沉积层中地下微生物所经历的埋藏和保存过程提供了一个独特的窗口。我们利用天冬氨酸外消旋建模和宏基因组学来确定哪些微生物群落在来自西伯利亚东北部的 1.1 Ma 永冻土中具有代谢活性。细胞外和细胞内基因组 DNA 的同时测序提供了在这段时间间隔内,在冰冻条件下区分灭绝和现存微生物的代谢潜力的见解。这项深入的宏基因组测序提高了我们对早更新世永冻土中现存微生物组的微生物多样性和代谢功能的理解。因此,这些发现将我们对永冻土中微生物的生存能力的认识从 33000 年延长到了 1.1 Ma。