Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Av. Lib. Bernardo O'Higgins 3363, Estacion Central, Chile.
Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago de Chile, Chile.
J Mol Model. 2019 Jun 1;25(6):176. doi: 10.1007/s00894-019-4066-8.
The protein superoxide dismutase 1 (SOD1) is a copper and zinc-binding protein that has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). The Zn(II) binding to SOD1 is critical for the stability of the protein, and has been by itself implicated in ALS pathogenesis. Hence, the quantum mechanical (QM) study of the Zn(II)-site of SOD1 is relevant for understanding ALS. The hybrid QM-molecular mechanics (QM/MM) approach commonly employed for the QM study of proteins is highly dependent on the size of the sub-system treated quantum-mechanically. The size of the QM system also determines the computational feasibility of a given method. In the present work, we compare optimized geometries for the metal site and Zn(II) dissociation energies obtained with a QM/MM methodology employing different sizes for the QM sub-system. We find that geometries converge rapidly to RMSDs of around 0.3 Å, and fails to converge further, while a QM system of 480 atoms was required for converging the Zn(II) interaction energy of SOD1 to within 5 kcalmol, and a 611-atoms QM system for a 1 kcalmol convergence with respect to our reference, 1280 QM-atoms system. Graphical Abstract The size of the QM system is critical for both the accuracy and the computational cost of a QM/MM calculation. We have identified a optimum balance for the study of the active site of the coppper, zinc superoxide dismutase.
蛋白质超氧化物歧化酶 1(SOD1)是一种结合铜和锌的蛋白质,它与肌萎缩侧索硬化症(ALS)的发病机制有关。SOD1 与 Zn(II)的结合对于蛋白质的稳定性至关重要,并且本身已被牵连到 ALS 的发病机制中。因此,SOD1 的 Zn(II)结合部位的量子力学(QM)研究对于理解 ALS 是相关的。通常用于蛋白质 QM 研究的混合量子力学-分子力学(QM/MM)方法高度依赖于以量子力学方式处理的子系统的大小。QM 系统的大小也决定了给定方法的计算可行性。在本工作中,我们比较了使用不同大小的 QM 子系统的 QM/MM 方法获得的金属位点和 Zn(II)离解能的优化几何形状。我们发现,几何形状迅速收敛到 RMSD 约为 0.3 Å,并且无法进一步收敛,而需要 480 个原子的 QM 系统才能将 SOD1 的 Zn(II)相互作用能收敛到 5 kcalmol 以内,并且需要 611 个原子的 QM 系统才能收敛到 1 kcalmol,相对于我们的参考值 1280 QM-atom 系统。
图形摘要
QM 系统的大小对于 QM/MM 计算的准确性和计算成本都至关重要。我们已经确定了研究铜锌超氧化物歧化酶活性部位的最佳平衡点。