Suppr超能文献

循环非编码 RNA 与蛋白生物标志物在心肌损伤检测中的比较分析。

Comparative Analysis of Circulating Noncoding RNAs Versus Protein Biomarkers in the Detection of Myocardial Injury.

机构信息

From the King's British Heart Foundation Centre, King's College London, United Kingdom (C.S., T.B., A.J., K.T., A.Z., J.B.-B., B.S., M. Mayr).

Department of General and Interventional Cardiology, University Heart Centre Hamburg Eppendorf, Germany (C.S., N.A.S., J.T.N., T.Z., D.W., S.B.).

出版信息

Circ Res. 2019 Jul 19;125(3):328-340. doi: 10.1161/CIRCRESAHA.119.314937. Epub 2019 Jun 4.

Abstract

RATIONALE

Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long noncoding RNAs (lncRNAs), are proposed novel biomarkers of myocardial injury. Their release kinetics have not been explored without confounding by heparin nor has their relationship to myocardial protein biomarkers.

OBJECTIVE

To compare ncRNA types in heparinase-treated samples with established and emerging protein biomarkers for myocardial injury.

METHODS AND RESULTS

Screening of 158 circRNAs and 21 lncRNAs in human cardiac tissue identified 12 circRNAs and 11 lncRNAs as potential biomarkers with cardiac origin. Eleven miRNAs were included. At low spike-in concentrations of myocardial tissue, significantly higher regression coefficients were observed across ncRNA types compared with cardiac troponins and cMyBP-C (cardiac myosin-binding protein C). Heparinase treatment of serial plasma and serum samples of patients undergoing transcoronary ablation of septal hypertrophy removed spurious correlations between miRNAs in non-heparinase-treated samples. After transcoronary ablation of septal hypertrophy, muscle-enriched miRNAs (miR-1 and miR-133a) showed a steeper and earlier increase than cardiac-enriched miRNAs (miR-499 and miR-208b). Putative cardiac lncRNAs, including LIPCAR (long intergenic noncoding RNA predicting cardiac remodeling and survival), did not rise, refuting a predominant cardiac origin. Cardiac circRNAs remained largely undetectable. In a validation cohort of acute myocardial infarction, receiver operating characteristic curve analysis revealed noninferiority of cardiac-enriched miRNAs, but miRNAs failed to identify cases presenting with low troponin values. cMyBP-C was validated as a biomarker with highly sensitive properties, and the combination of muscle-enriched miRNAs with high-sensitive cardiac troponin T and cMyBP-C returned the highest area under the curve values.

CONCLUSIONS

In a comparative assessment of ncRNAs and protein biomarkers for myocardial injury, cMyBP-C showed properties as the most sensitive cardiac biomarker while miRNAs emerged as promising candidates to integrate ncRNAs with protein biomarkers. Sensitivity of current miRNA detection is inferior to cardiac proteins but a multibiomarker combination of muscle-enriched miRNAs with cMyBP-C and cardiac troponins could open a new path of integrating complementary characteristics of different biomarker types.

摘要

背景

非编码 RNA(ncRNA),包括 microRNA(miRNA)、环状 RNA(circRNA)和长非编码 RNA(lncRNA),被认为是心肌损伤的新型生物标志物。尚未研究肝素对其释放动力学的影响,也未研究其与心肌蛋白生物标志物的关系。

目的

比较肝素酶处理样本中的 ncRNA 类型与已确立和新兴的心肌损伤蛋白生物标志物。

方法和结果

在人类心脏组织中筛选了 158 种 circRNA 和 21 种 lncRNA,发现 12 种 circRNA 和 11 种 lncRNA 具有心脏起源的潜在生物标志物。还包括 11 种 miRNA。在低浓度心脏组织掺入物的情况下,与心脏肌钙蛋白和 cMyBP-C(心肌肌球蛋白结合蛋白 C)相比,ncRNA 类型的回归系数明显更高。对接受经冠状窦间隔肥大消融术的患者的连续血浆和血清样本进行肝素酶处理,去除了非肝素酶处理样本中 miRNA 之间的虚假相关性。经冠状窦间隔肥大消融术后,富含肌肉的 miRNA(miR-1 和 miR-133a)的升高幅度和时间均早于富含心脏的 miRNA(miR-499 和 miR-208b)。包括 LIPCAR(长基因间非编码 RNA 预测心脏重塑和存活)在内的推定心脏 lncRNA 并未升高,从而否定了主要的心脏起源。心脏 circRNA 仍然难以检测。在急性心肌梗死的验证队列中,受试者工作特征曲线分析显示,富含心脏的 miRNA 具有非劣效性,但 miRNA 未能识别出具有低肌钙蛋白值的病例。cMyBP-C 被验证为具有高度敏感特性的生物标志物,富含肌肉的 miRNA 与高敏肌钙蛋白 T 和 cMyBP-C 的组合返回了最高的曲线下面积值。

结论

在对 ncRNA 和心肌损伤蛋白生物标志物进行比较评估时,cMyBP-C 作为最敏感的心脏生物标志物,而 miRNA 则作为有前途的候选标志物,将 ncRNA 与蛋白生物标志物结合起来。当前 miRNA 检测的敏感性低于心脏蛋白,但富含肌肉的 miRNA 与 cMyBP-C 和心脏肌钙蛋白的多生物标志物组合可能为整合不同生物标志物类型的互补特性开辟新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af47/6641471/e141716f8506/res-125-328-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验