Suppr超能文献

具有蜂窝状晶格的二维硅铋(SiBi)单层:调控电子性质的第一性原理研究

Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties.

作者信息

Bafekry Asadollah, Shojaei Fazel, Obeid Mohammed M, Ghergherehchi Mitra, Nguyen C, Oskouian Mohammad

机构信息

Department of Physics, University of Guilan 41335-1914 Rasht Iran

Department of Physics, University of Antwerp Groenenborgerlaan 171 B-2020 Antwerp Belgium.

出版信息

RSC Adv. 2020 Sep 2;10(53):31894-31900. doi: 10.1039/d0ra05026a. eCollection 2020 Aug 26.

Abstract

Using density functional theory, we investigate a novel two-dimensional silicon bismotide (SiBi) that has a layered GaSe-like crystal structure. molecular dynamic simulations and phonon dispersion calculations suggest its good thermal and dynamical stability. The SiBi monolayer is a semiconductor with a narrow indirect bandgap of 0.4 eV. Our results show that the indirect bandgap decreases as the number of layers increases, and when the number of layers is more than six layers, direct-to-indirect bandgap switching occurs. The SiBi bilayer is found to be very sensitive to an E-field. The bandgap monotonically decreases in response to uniaxial and biaxial compressive strain, and reaches 0.2 eV at 5%, while at 6%, the semiconductor becomes a metal. For both uniaxial and biaxial tensile strains, the material remains a semiconductor and indirect-to-direct bandgap transition occurs at a strain of 3%. Compared to a SiBi monolayer with a layer thickness of 4.89 Å, the bandgap decreases with either increasing or decreasing layer thickness, and at a thicknesses of 4.59 to 5.01 Å, the semiconductor-to-metal transition happens. In addition, under pressure, the semiconducting character of the SiBi bilayer with a 0.25 eV direct bandgap is preserved. Our results demonstrate that the SiBi nanosheet is a promising candidate for designing high-speed low-dissipation devices.

摘要

利用密度泛函理论,我们研究了一种具有类GaSe层状晶体结构的新型二维硅铋(SiBi)。分子动力学模拟和声子色散计算表明其具有良好的热稳定性和动力学稳定性。SiBi单层是一种半导体,间接带隙窄,为0.4 eV。我们的结果表明,间接带隙随着层数的增加而减小,当层数超过六层时,会发生直接带隙到间接带隙的转变。发现SiBi双层对电场非常敏感。带隙随单轴和双轴压缩应变单调减小,在5%应变时达到0.2 eV,而在6%应变时,该半导体变为金属。对于单轴和双轴拉伸应变,材料仍为半导体,在3%应变时发生间接带隙到直接带隙的转变。与层厚为4.89 Å的SiBi单层相比,带隙随层厚的增加或减小而减小,在4.59至5.01 Å的厚度下,会发生半导体到金属的转变。此外,在压力下,具有0.25 eV直接带隙的SiBi双层的半导体特性得以保留。我们的结果表明,SiBi纳米片是设计高速低耗散器件的有前途的候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7bd/9056497/b84b1825c5d6/d0ra05026a-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验