Suppr超能文献

嗜热栖热放线菌F-3菌株的一种新型热稳定几丁质分解机制,由具有不同作用模式的几丁质酶组成。

A novel thermostable chitinolytic machinery of sp. F-3 consisting of chitinases with different action modes.

作者信息

Sun Xiaomeng, Li Yingjie, Tian Zhennan, Qian Yuanchao, Zhang Huaiqiang, Wang Lushan

机构信息

State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Jimo Binhai Road, Qingdao, 266237 Shandong People's Republic of China.

出版信息

Biotechnol Biofuels. 2019 Jun 3;12:136. doi: 10.1186/s13068-019-1472-1. eCollection 2019.

Abstract

BACKGROUND

The biodegradation of chitin is an important part of the carbon and nitrogen cycles in nature. Speeding up the biotransformation of chitin substrates can not only reduce pollution, but also produce high value-added products. However, this process is strictly regulated by the catalytic efficiency of the chitinolytic machinery. Therefore, it is necessary to study the mode of action and compound mechanisms of different chitin-degrading enzymes in depth to improve the catalytic efficiency of the chitinolytic machinery.

RESULTS

The thermophilic bacterium sp. F-3 showed comparatively high chitin degradation activities. To elucidate the mechanism underlying chitin hydrolysis, six chitin degradation-related enzymes were identified in the extracellular proteome of sp. F-3, including three chitinases (Chi18A, Chi18B, and Chi18C) from the GH18 family, one GH19 chitinase (Chi19A), one GH20 β--acetylhexosaminidase (GH20A), and one lytic polysaccharide monooxygenase (LPMO10A) from the AA10 family. All were upregulated by chitin. The heterologously expressed hydrolases could withstand temperatures up to 70 °C and were stable at pH values of 4 to 11. Biochemical analyses displayed that these chitin degradation-related enzymes had different functions and thus showed synergistic effects during chitin degradation. Furthermore, based on structural bioinformatics data, we speculated that the different action modes among the three GH18 chitinases may be caused by loop differences in their active site architectures. Among them, Chi18A is probably processive and mainly acts on polysaccharides, while Chi18B and Chi18C are likely endo-non-processive and displayed higher activity on the degradation of chitin oligosaccharides. In addition, proteomic data and synergy experiments also indicated the importance of LPMO10A, which could promote the activities of the hydrolases and increase the monosaccharide content in the reaction system, respectively.

CONCLUSIONS

In this article, the chitinolytic machinery of a thermophilic species was studied to explore the structural basis for the synergistic actions of chitinases from different GH18 subfamilies. The elucidation of the degradation mechanisms of these thermophilic chitinases will lay a theoretical foundation for the efficient industrialized transformation of natural chitin.

摘要

背景

几丁质的生物降解是自然界碳氮循环的重要组成部分。加速几丁质底物的生物转化不仅可以减少污染,还能生产高附加值产品。然而,这一过程受到几丁质分解机制催化效率的严格调控。因此,有必要深入研究不同几丁质降解酶的作用方式和复合机制,以提高几丁质分解机制的催化效率。

结果

嗜热菌sp. F-3表现出较高的几丁质降解活性。为阐明几丁质水解的潜在机制,在sp. F-3的细胞外蛋白质组中鉴定出六种与几丁质降解相关的酶,包括来自GH18家族的三种几丁质酶(Chi18A、Chi18B和Chi18C)、一种GH19几丁质酶(Chi19A)、一种GH20β-乙酰己糖胺酶(GH20A)以及一种来自AA10家族的裂解多糖单加氧酶(LPMO10A)。所有这些酶在几丁质存在时均上调表达。异源表达的水解酶能够耐受高达70°C的温度,并且在pH值为4至11时保持稳定。生化分析表明,这些与几丁质降解相关的酶具有不同功能,因此在几丁质降解过程中表现出协同作用。此外,基于结构生物信息学数据,我们推测三种GH18几丁质酶之间不同的作用模式可能是由其活性位点结构中的环差异引起的。其中,Chi18A可能具有连续性,主要作用于多糖,而Chi18B和Chi18C可能是内切非连续性的,对几丁质寡糖的降解表现出更高的活性。此外,蛋白质组学数据和协同实验还表明了LPMO10A的重要性,它可以分别促进水解酶的活性并增加反应体系中的单糖含量。

结论

本文研究了嗜热菌的几丁质分解机制,以探索来自不同GH18亚家族的几丁质酶协同作用的结构基础。阐明这些嗜热几丁质酶的降解机制将为天然几丁质的高效工业化转化奠定理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32da/6545677/e05fdbb329cf/13068_2019_1472_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验