Suppr超能文献

基于现代城市数据的犯罪率推断非平稳模型。

Non-Stationary Model for Crime Rate Inference Using Modern Urban Data.

作者信息

Wang Hongjian, Yao Huaxiu, Kifer Daniel, Graif Corina, Li Zhenhui

机构信息

College of Information Sciences and Technology, Pennsylvania State University.

Department of Computer Science and Engineering, Pennsylvania State University.

出版信息

IEEE Trans Big Data. 2019 Jun;5(2):180-194. doi: 10.1109/TBDATA.2017.2786405. Epub 2017 Dec 22.

Abstract

Crime is one of the most important social problems in the country, affecting public safety, children development, and adult socioeconomic status. Understanding what factors cause higher crime rate is critical for policy makers in their efforts to reduce crime and increase citizens' life quality. We tackle a fundamental problem in our paper: crime rate inference at the neighborhood level. Traditional approaches have used demographics and geographical influences to estimate crime rates in a region. With the fast development of positioning technology and prevalence of mobile devices, a large amount of modern urban data have been collected and such big data can provide new perspectives for understanding crime. In this paper, we use large-scale Point-Of-Interest data and taxi flow data in the city of Chicago, IL in the USA. We observe significantly improved performance in crime rate inference compared to using traditional features. Such an improvement is consistent over multiple years. We also show that these new features are significant in the feature importance analysis. The correlations between crime and various observed features are not constant over the whole city. In order to address this geospatial non-stationary property, we further employ the geographically weighted regression on top of negative binomial model (GWNBR). Experiments have shown that GWNBR outperforms the negative binomial model.

摘要

犯罪是该国最重要的社会问题之一,影响着公共安全、儿童发展和成年人的社会经济地位。了解哪些因素导致更高的犯罪率对于政策制定者努力减少犯罪和提高公民生活质量至关重要。我们在论文中解决了一个基本问题:邻里层面的犯罪率推断。传统方法利用人口统计学和地理影响来估计一个地区的犯罪率。随着定位技术的快速发展和移动设备的普及,大量现代城市数据被收集,这些大数据可以为理解犯罪提供新的视角。在本文中,我们使用了美国伊利诺伊州芝加哥市的大规模兴趣点数据和出租车流量数据。与使用传统特征相比,我们观察到在犯罪率推断方面性能有显著提高。这种提高在多年中是一致的。我们还表明,这些新特征在特征重要性分析中很重要。犯罪与各种观察到的特征之间的相关性在整个城市并不恒定。为了解决这种地理空间非平稳特性,我们在负二项式模型(GWNBR)之上进一步采用地理加权回归。实验表明,GWNBR优于负二项式模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eda/6548515/a01ec01b59f5/nihms979480f1.jpg

相似文献

1
Non-Stationary Model for Crime Rate Inference Using Modern Urban Data.基于现代城市数据的犯罪率推断非平稳模型。
IEEE Trans Big Data. 2019 Jun;5(2):180-194. doi: 10.1109/TBDATA.2017.2786405. Epub 2017 Dec 22.
4
Neighborhood crime and access to health-enabling resources in Chicago.芝加哥的邻里犯罪与获取促进健康资源的机会。
Prev Med Rep. 2018 Jan 31;9:153-156. doi: 10.1016/j.pmedr.2018.01.017. eCollection 2018 Mar.
8
Modelling underreported spatio-temporal crime events.建模未报告的时空犯罪事件。
PLoS One. 2023 Jul 12;18(7):e0287776. doi: 10.1371/journal.pone.0287776. eCollection 2023.
9
Fearfulness in the Community: Empirical Assessments of Influential Factors.社区恐惧:影响因素的实证评估。
J Interpers Violence. 2019 Feb;34(3):562-584. doi: 10.1177/0886260516642295. Epub 2016 Apr 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验