Suppr超能文献

一种用于识别局部关联地理模式的贝叶斯共享组件空间建模方法:以大多伦多地区的青少年罪犯与暴力犯罪为例

A bayesian shared component spatial modeling approach for identifying the geographic pattern of local associations: a case study of young offenders and violent crimes in Greater Toronto Area.

作者信息

Law Jane, Abdullah Abu Yousuf Md

机构信息

School of Planning, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada.

School of Public Health Sciences, University of Waterloo, Waterloo, ON Canada.

出版信息

Crime Sci. 2024;13(1):37. doi: 10.1186/s40163-024-00235-5. Epub 2024 Oct 30.

Abstract

BACKGROUND SETTING

Traditional spatial or non-spatial regression techniques require individual variables to be defined as dependent and independent variables, often assuming a unidirectional and (global) linear relationship between the variables under study. This research studies the Bayesian shared component spatial (BSCS) modeling as an alternative approach to identifying local associations between two or more variables and their spatial patterns.

METHODS

The variables to be studied, young offenders (YO) and violent crimes (VC), are treated as (multiple) outcomes in the BSCS model. Separate non-BSCS models that treat YO as the outcome variable and VC as the independent variable have also been developed. Results are compared in terms of model fit, risk estimates, and identification of hotspot areas.

RESULTS

Compared to the traditional non-BSCS models, the BSCS models fitted the data better and identified a strong spatial association between YO and VC. Using the BSCS technique allowed both the YO and VC to be modeled as outcome variables, assuming common data-generating processes that are influenced by a set of socioeconomic covariates. The BSCS technique offered smooth and easy mapping of the identified association, with the maps displaying the common (shared) and separate (individual) hotspots of YO and VC.

CONCLUSIONS

The proposed method can transform existing association analyses from methods requiring inputs as dependent and independent variables to outcome variables only and shift the reliance on regression coefficients to probability risk maps for characterizing (local) associations between the outcomes.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1186/s40163-024-00235-5.

摘要

背景设定

传统的空间或非空间回归技术要求将各个变量定义为因变量和自变量,通常假定所研究变量之间存在单向且(全局)线性关系。本研究探讨贝叶斯共享成分空间(BSCS)建模,作为识别两个或多个变量及其空间模式之间局部关联的替代方法。

方法

在BSCS模型中,将待研究的变量,即青少年罪犯(YO)和暴力犯罪(VC),视为(多个)结果。还开发了将YO作为结果变量、VC作为自变量的单独非BSCS模型。从模型拟合、风险估计和热点区域识别等方面对结果进行比较。

结果

与传统的非BSCS模型相比,BSCS模型对数据的拟合效果更好,并识别出YO和VC之间存在很强的空间关联。使用BSCS技术可将YO和VC都建模为结果变量,假定存在受一组社会经济协变量影响的共同数据生成过程。BSCS技术提供了已识别关联的平滑且便捷的映射,地图显示了YO和VC的共同(共享)和单独(个体)热点。

结论

所提出的方法可以将现有的关联分析从需要输入因变量和自变量的方法转变为仅需要输入结果变量的方法,并将对回归系数的依赖转移到用于表征结果之间(局部)关联的概率风险图上。

补充信息

在线版本包含可在10.1186/s40163-024-00235-5获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5c3/11525323/420fa7e7364e/40163_2024_235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验