文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

三价铁-紫草素超分子纳米药物作为免疫原性细胞死亡刺激剂和多功能免疫佐剂用于肿瘤疫苗接种。

Fe(III)-Shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination.

机构信息

Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China.

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

出版信息

Theranostics. 2023 Sep 25;13(15):5266-5289. doi: 10.7150/thno.81650. eCollection 2023.


DOI:10.7150/thno.81650
PMID:37908730
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10614674/
Abstract

Immunoadjuvants, as an indispensable component of tumor vaccines, can observably enhance the magnitude, breadth, and durability of antitumor immunity. However, current immunoadjuvants suffer from different issues such as weak immunogenicity, inadequate cellular internalization, poor circulation time, and mono-functional bioactivity. Herein, we construct Fe-Shikonin metal-phenolic networks (FeShik) nanomedicines as immunogenic cell death (ICD) stimulants and multifunctional immunoadjuvants for tumor vaccination. The multifunctionality of FeShik nanomedicines is investigated by loading ovalbumin (OVA) as the model antigen to construct OVA@FeShik nanovaccines or 4T1 tumor cell fragment (TF) as homologous antigen to construct TF@FeShik nanovaccines. In vitro examinations including GSH responsive, •OH generation, colloid stability, cellular uptake, cytotoxicity mechanism of ferroptosis and necroptosis, ICD effect, the promotion of DC maturation and antigen cross-presentation were studied. In vivo observations including pharmacokinetics and biodistribution, antitumor effect, abscopal effect, immune memory effect, and biosafety were performed. The presence of FeShik nanomedicines can significantly prolong the blood circulation time of antigens, increasing the bioavailability of antigens. Upon phagocytosis by tumor cells, FeShik nanomedicines can disassemble into Fe and Shikonin in response to tumor microenvironments, leading to ICD of tumor cells via ferroptosis and necroptosis. Consequently, ICD-released autologous tumor cell lysates and pro-inflammatory cytokines not only stimulate DC maturation and antigen cross-presentation, but also promote macrophage repolarization and cytotoxic T lymphocyte infiltration, resulting in the activation of adaptive immune responses toward solid tumors. In a word, our FeShik supramolecular nanomedicines integrate bioactivities of ICD stimulants and immunoadjuvants, such as eradicating tumor cells, activating antitumor immune responses, modulating immunosuppressive tumor microenvironments, and biodegradation after immunotherapy. Encouraged by the diversity of polyphenols and metal ions, our research may provide a valuable paradigm to establish a large library for tumor vaccination.

摘要

免疫佐剂作为肿瘤疫苗不可或缺的组成部分,可以显著增强抗肿瘤免疫的强度、广度和持久性。然而,目前的免疫佐剂存在免疫原性弱、细胞内化不足、循环时间短、生物活性单一等问题。在此,我们构建了负载卵清蛋白(OVA)的 Fe-Shikonin 金属多酚网络(FeShik)纳米药物作为免疫原性细胞死亡(ICD)刺激剂和多功能免疫佐剂用于肿瘤疫苗接种。通过装载 OVA 作为模型抗原构建 OVA@FeShik 纳米疫苗,或装载同源抗原 4T1 肿瘤细胞碎片(TF)构建 TF@FeShik 纳米疫苗,研究了 FeShik 纳米药物的多功能性。进行了体外研究,包括 GSH 响应、•OH 生成、胶体稳定性、细胞摄取、铁死亡和坏死性细胞死亡的细胞毒性机制、ICD 效应、DC 成熟和抗原交叉呈递的促进作用。进行了体内观察,包括药代动力学和生物分布、抗肿瘤作用、远隔效应、免疫记忆效应和生物安全性。FeShik 纳米药物的存在可以显著延长抗原的血液循环时间,提高抗原的生物利用度。当被肿瘤细胞吞噬后,FeShik 纳米药物可以响应肿瘤微环境分解为 Fe 和 Shikonin,通过铁死亡和坏死性细胞死亡导致肿瘤细胞发生 ICD。因此,ICD 释放的自体肿瘤细胞裂解物和促炎细胞因子不仅刺激 DC 成熟和抗原交叉呈递,还促进巨噬细胞重极化和细胞毒性 T 淋巴细胞浸润,从而激活针对实体肿瘤的适应性免疫反应。总之,我们的 FeShik 超分子纳米药物整合了 ICD 刺激剂和免疫佐剂的生物活性,如消除肿瘤细胞、激活抗肿瘤免疫反应、调节免疫抑制性肿瘤微环境以及免疫治疗后的生物降解。受多酚和金属离子多样性的启发,我们的研究可能为建立用于肿瘤疫苗接种的大型化合物库提供了有价值的范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/01eb0880f9ee/thnov13p5266g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/914819fc05cd/thnov13p5266g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/e441b7b1bd3e/thnov13p5266g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/55a4eb6fb201/thnov13p5266g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/5d56ab315c2a/thnov13p5266g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/d2243321ec6a/thnov13p5266g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/2360f246022a/thnov13p5266g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/12c5c3b5cb36/thnov13p5266g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/2b1aed521f01/thnov13p5266g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/01eb0880f9ee/thnov13p5266g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/914819fc05cd/thnov13p5266g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/e441b7b1bd3e/thnov13p5266g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/55a4eb6fb201/thnov13p5266g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/5d56ab315c2a/thnov13p5266g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/d2243321ec6a/thnov13p5266g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/2360f246022a/thnov13p5266g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/12c5c3b5cb36/thnov13p5266g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/2b1aed521f01/thnov13p5266g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1740/10614674/01eb0880f9ee/thnov13p5266g009.jpg

相似文献

[1]
Fe(III)-Shikonin supramolecular nanomedicines as immunogenic cell death stimulants and multifunctional immunoadjuvants for tumor vaccination.

Theranostics. 2023

[2]
Ferroptosis and Necroptosis Produced Autologous Tumor Cell Lysates Co-Delivering with Combined Immnoadjuvants as Personalized Nanovaccines for Antitumor Immunity.

ACS Nano. 2023-8-8

[3]
Enhancing Tumor Therapy of Fe(III)-Shikonin Supramolecular Nanomedicine via Triple Ferroptosis Amplification.

ACS Appl Mater Interfaces. 2022-8-24

[4]
Nanomedicines for an Enhanced Immunogenic Cell Death-Based Cancer Vaccination Response.

Acc Chem Res. 2024-3-19

[5]
Fe(III)-Shikonin Supramolecular Nanomedicine for Combined Therapy of Tumor via Ferroptosis and Necroptosis.

Adv Healthc Mater. 2022-1

[6]
Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.

Acc Chem Res. 2020-9-15

[7]
Rough Nanovaccines Boost Antitumor Immunity Through the Enhancement of Vaccination Cascade and Immunogenic Cell Death Induction.

Small Methods. 2023-5

[8]
Tumor-Targeted Nanomedicine for Immunotherapy.

Acc Chem Res. 2020-12-15

[9]
Nanomedicines as enhancers of tumor immunogenicity to augment cancer immunotherapy.

Drug Discov Today. 2024-3

[10]
Acidity-responsive polyphenol-coordinated nanovaccines for improving tumor immunotherapy bidirectional reshaping of the immunosuppressive microenvironment and controllable release of antigens.

Biomater Sci. 2024-6-11

引用本文的文献

[1]
Oral oncolytic magnetotactic bacteria elicit anti-colorectal tumor immunity and reprogram microbiota metabolism.

Bioact Mater. 2025-6-29

[2]
Photothermal therapeutic effects and biosafety of a carbon nanoparticles-Fe(ii) complex for triple-negative breast cancer.

RSC Adv. 2025-6-10

[3]
Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools.

Int J Nanomedicine. 2024-12-19

[4]
Supramolecular nanomedicine in the intelligent cancer therapy: recent advances and future.

Front Pharmacol. 2024-10-11

[5]
Nanomaterials: leading immunogenic cell death-based cancer therapies.

Front Immunol. 2024

[6]
Ferroptosis: emerging roles in lung cancer and potential implications in biological compounds.

Front Pharmacol. 2024-5-9

本文引用的文献

[1]
Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis.

Sci Adv. 2022-12-9

[2]
Polypyrrole Nanoenzymes as Tumor Microenvironment Modulators to Reprogram Macrophage and Potentiate Immunotherapy.

Adv Sci (Weinh). 2022-8

[3]
Mussel-Inspired Ligand Clicking and Ion Coordination on 2D Black Phosphorus for Cancer Multimodal Imaging and Therapy.

Small. 2022-7

[4]
Versatile polyphenolic platforms in regulating cell biology.

Chem Soc Rev. 2022-5-23

[5]
Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework.

Biomaterials. 2022-4

[6]
Copper-Based Metal-Organic Framework Overcomes Cancer Chemoresistance through Systemically Disrupting Dynamically Balanced Cellular Redox Homeostasis.

J Am Chem Soc. 2022-3-23

[7]
Synergistic checkpoint-blockade and radiotherapy-radiodynamic therapy via an immunomodulatory nanoscale metal-organic framework.

Nat Biomed Eng. 2022-2

[8]
Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motion-Induced Photo-Hyperthermia for Cancer Therapy.

Adv Sci (Weinh). 2022-4

[9]
Fibronectin-Coated Metal-Phenolic Networks for Cooperative Tumor Chemo-/Chemodynamic/Immune Therapy via Enhanced Ferroptosis-Mediated Immunogenic Cell Death.

ACS Nano. 2022-1-25

[10]
Phototheranostic Metal-Phenolic Networks with Antiexosomal PD-L1 Enhanced Ferroptosis for Synergistic Immunotherapy.

J Am Chem Soc. 2022-1-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索