Suppr超能文献

治疗前和治疗后弥漫性胶质瘤组织亚区域的分割,包括切除腔。

Segmentation of pre- and posttreatment diffuse glioma tissue subregions including resection cavities.

作者信息

Baig Saif, Vidic Igor, Mastorakos George M, Smith Robert X, White Nathan, Bash Suzie, Dale Anders M, McDonald Carrie R, Beaumont Thomas, Seibert Tyler M, Hattangadi-Gluth Jona, Kesari Santosh, Farid Nikdokht, Rudie Jeffrey D

机构信息

Department of Radiology, Nassau University Medical Center, East Meadow, New York, USA.

Cortechs.ai, San Diego, California, USA.

出版信息

Neurooncol Adv. 2024 Aug 16;6(1):vdae140. doi: 10.1093/noajnl/vdae140. eCollection 2024 Jan-Dec.

Abstract

BACKGROUND

Evaluating longitudinal changes in gliomas is a time-intensive process with significant interrater variability. Automated segmentation could reduce interrater variability and increase workflow efficiency for assessment of treatment response. We sought to evaluate whether neural networks would be comparable to expert assessment of pre- and posttreatment diffuse gliomas tissue subregions including resection cavities.

METHODS

A retrospective cohort of 647 MRIs of patients with diffuse gliomas (average 55.1 years; 29%/36%/34% female/male/unknown; 396 pretreatment and 251 posttreatment, median 237 days post-surgery) from 7 publicly available repositories in The Cancer Imaging Archive were split into training (536) and test/generalization (111) samples. T1, T1-post-contrast, T2, and FLAIR images were used as inputs into a 3D nnU-Net to predict 3 tumor subregions and resection cavities. We evaluated the performance of networks trained on pretreatment training cases (Pre-Rx network), posttreatment training cases (Post-Rx network), and both pre- and posttreatment cases (Combined networks).

RESULTS

Segmentation performance was as good as or better than interrater reliability with median dice scores for main tumor subregions ranging from 0.82 to 0.94 and strong correlations between manually segmented and predicted total lesion volumes (0.94 <  values < 0.98). The Combined network performed similarly to the Pre-Rx network on pretreatment cases and the Post-Rx network on posttreatment cases with fewer false positive resection cavities (7% vs 59%).

CONCLUSIONS

Neural networks that accurately segment pre- and posttreatment diffuse gliomas have the potential to improve response assessment in clinical trials and reduce provider burden and errors in measurement.

摘要

背景

评估胶质瘤的纵向变化是一个耗时的过程,且评分者间存在显著差异。自动分割可以减少评分者间的差异,并提高评估治疗反应的工作流程效率。我们试图评估神经网络在评估治疗前和治疗后弥漫性胶质瘤组织亚区域(包括切除腔)方面是否与专家评估相当。

方法

从癌症影像存档库中的7个公开可用存储库中选取647例弥漫性胶质瘤患者的MRI(平均年龄55.1岁;女性/男性/未知分别为29%/36%/34%;396例治疗前和251例治疗后,术后中位时间237天),将其分为训练样本(536例)和测试/泛化样本(111例)。将T1、T1增强、T2和FLAIR图像作为输入,输入到3D nnU-Net中,以预测3个肿瘤亚区域和切除腔。我们评估了在治疗前训练病例(治疗前网络)、治疗后训练病例(治疗后网络)以及治疗前和治疗后病例(联合网络)上训练的网络的性能。

结果

分割性能与评分者间可靠性相当或更好,主要肿瘤亚区域的中位骰子分数在0.82至0.94之间,手动分割和预测的总病变体积之间具有强相关性(0.94<值<0.98)。联合网络在治疗前病例上的表现与治疗前网络相似,在治疗后病例上的表现与治疗后网络相似,假阳性切除腔较少(7%对59%)。

结论

能够准确分割治疗前和治疗后弥漫性胶质瘤的神经网络有潜力改善临床试验中的反应评估,并减轻医疗人员的负担和测量误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28d0/11407510/4f573ccb1bd4/vdae140_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验