Zele Andrew J, Adhikari Prakash, Cao Dingcai, Feigl Beatrix
Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
Front Neurol. 2019 May 22;10:529. doi: 10.3389/fneur.2019.00529. eCollection 2019.
Retinal photoreceptors provide the main stage in the mammalian eye for regulating the retinal illumination through changes in pupil diameter, with a small population of melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) forming the primary afferent pathway for this response. The purpose of this study is to determine how melanopsin interacts with the three cone photoreceptor classes in the human eye to modulate the light-adapted pupil response. We investigated the independent and combined contributions of the inner and outer retinal photoreceptor inputs to the afferent pupil pathway in participants with trichromatic color vision using a method to independently control the excitations of ipRGCs, cones and rods in the retina. We show that melanopsin-directed stimuli cause a transient pupil constriction generated by cones in the shadow of retinal blood vessels; desensitizing these penumbral cone signals uncovers a signature melanopsin pupil response that includes a longer latency (292 ms) and slower time (4.1x) and velocity (7.7x) to constriction than for cone-directed stimuli, and which remains sustained post-stimulus offset. Compared to melanopsin-mediated pupil responses, the cone photoreceptor-initiated pupil responses are more transient with faster constriction latencies, higher velocities and a secondary constriction at light offset. The combined pupil responses reveal that melanopsin signals are additive with the cone signals. The visual system uses the L-, M-, and S-cone photoreceptor inputs to the afferent pupil pathway to accomplish the tonic modulations of pupil size to changes in image contrast. The inner retinal melanopsin-expressing ipRGCs mediate the longer-term, sustained pupil constriction to set the light-adapted pupil diameter during extended light exposures.
视网膜光感受器是哺乳动物眼睛中通过瞳孔直径变化调节视网膜光照的主要场所,一小部分表达黑视蛋白的内在光敏视网膜神经节细胞(ipRGCs)构成了这一反应的主要传入通路。本研究的目的是确定黑视蛋白如何与人眼中的三种视锥光感受器相互作用,以调节光适应瞳孔反应。我们使用一种独立控制视网膜中ipRGCs、视锥细胞和视杆细胞兴奋的方法,研究了具有三色视觉的参与者中视网膜内外光感受器输入对传入瞳孔通路的独立和联合贡献。我们发现,由黑视蛋白引导的刺激会导致视锥细胞在视网膜血管阴影中产生短暂的瞳孔收缩;使这些半影视锥信号脱敏会揭示一种典型的黑视蛋白瞳孔反应,该反应的收缩潜伏期更长(292毫秒),收缩时间(4.1倍)和速度(7.7倍)比视锥细胞引导的刺激更慢,并且在刺激结束后仍持续存在。与黑视蛋白介导的瞳孔反应相比,视锥光感受器引发的瞳孔反应更短暂,收缩潜伏期更快,速度更高,并且在光消失时会出现二次收缩。联合瞳孔反应表明,黑视蛋白信号与视锥细胞信号是相加的。视觉系统利用传入瞳孔通路中的L-、M-和S-视锥光感受器输入来完成瞳孔大小对图像对比度变化的紧张性调节。视网膜内表达黑视蛋白的ipRGCs介导长期、持续的瞳孔收缩,以在长时间光照期间设定光适应瞳孔直径。