Melanopsin Photoreception and Visual Science Laboratories, Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
Eur J Neurosci. 2022 Apr;55(8):1986-2002. doi: 10.1111/ejn.15659. Epub 2022 Apr 7.
A decision during a visual task is marked by a task-evoked pupil dilation (TEPD) that is linked to the global cortical arousal state. Melanopsin expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) form the afferent pathway for this pupil response. Melanopsin activation also influences mood and arousal and increases activity in decision-making brain areas that receive direct ipRGC projections. Here, an optical photostimulation method controlled the excitations of all five photoreceptor classes in the human eye to isolate melanopsin-mediated photoreception. We hypothesised that the TEPD can be driven by directing active visual covert attention through the ipRGC pathway. When observers are completely certain of the stimulus presence, melanopsin-directed stimulation produces a TEPD of similar amplitude to a cone-directed stimulation, with their combination producing larger amplitudes. This dilation is satisfactorily modelled by linear addition with a higher melanopsin weighting in ipRGCs. Visual reaction times were longest in response to melanopsin-directed lights. Next, we asked whether the afferent photoreceptor input and decision certainty, controlled by priming the observer's a priori expectation, interact to drive the TEPD. Signal detection analysis showed that by fixing the predecision certainty (bias), the phasic arousal and TEPD amplitude vary with observer criterion (c') and sensitivity (d') but not with preferential activation of melanopsin. The signature feature of the melanopsin response during attention was a biphasic TEPD. We conclude that active covert attention can be modulated by visual information mediated via ipRGCs, but that phasic arousal responses marked using the TEPD are not increased by higher levels of melanopsin activation.
在视觉任务中,决策伴随着瞳孔扩张(TEPD),这与大脑的整体兴奋状态有关。表达黑视蛋白的视网膜神经节细胞(ipRGC)构成了该瞳孔反应的传入途径。黑视蛋白的激活也会影响情绪和兴奋度,并增加接收直接 ipRGC 投射的决策大脑区域的活动。在这里,一种光学光刺激方法控制了人眼中所有五种光感受器的兴奋,以分离黑视蛋白介导的光感受。我们假设,可以通过主动的视觉内隐注意,通过 ipRGC 途径来驱动 TEPD。当观察者完全确定刺激的存在时,黑视蛋白定向刺激会产生与视锥细胞定向刺激相似幅度的 TEPD,而两者的组合会产生更大的幅度。这种扩张可以通过线性相加来很好地建模,其中 ipRGC 中的黑视蛋白权重更高。对黑视蛋白定向光的视觉反应时间最长。接下来,我们想知道,由预先刺激观察者的先验期望控制的传入光感受器输入和决策确定性是否相互作用来驱动 TEPD。信号检测分析表明,通过固定预决策的确定性(偏差),相位唤醒和 TEPD 幅度随观察者的标准(c')和敏感度(d')而变化,但不受黑视蛋白的优先激活的影响。注意力期间黑视蛋白反应的特征是双相 TEPD。我们得出的结论是,主动的内隐注意可以通过 ipRGCs 介导的视觉信息来调节,但是使用 TEPD 标记的相位唤醒反应不会因黑视蛋白激活水平的提高而增加。