Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
Pirogov Russian National Research Medical University, Moscow, Russia.
PLoS Biol. 2019 Jun 13;17(6):e3000314. doi: 10.1371/journal.pbio.3000314. eCollection 2019 Jun.
Hypervariable T cell receptors (TCRs) play a key role in adaptive immunity, recognizing a vast diversity of pathogen-derived antigens. Our ability to extract clinically relevant information from large high-throughput sequencing of TCR repertoires (RepSeq) data is limited, because little is known about TCR-disease associations. We present Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences (ALICE), a statistical approach that identifies TCR sequences actively involved in current immune responses from a single RepSeq sample and apply it to repertoires of patients with a variety of disorders - patients with autoimmune disease (ankylosing spondylitis [AS]), under cancer immunotherapy, or subject to an acute infection (live yellow fever [YF] vaccine). We validate the method with independent assays. ALICE requires no longitudinal data collection nor large cohorts, and it is directly applicable to most RepSeq datasets. Its results facilitate the identification of TCR variants associated with diseases and conditions, which can be used for diagnostics and rational vaccine design.
高变区 T 细胞受体 (TCRs) 在适应性免疫中发挥着关键作用,能够识别广泛多样的病原体衍生抗原。我们从大规模高通量 TCR 库测序 (RepSeq) 数据中提取临床相关信息的能力有限,因为我们对 TCR-疾病关联知之甚少。我们提出了通过扩展序列聚类识别抗原特异性淋巴细胞的方法 (ALICE),这是一种统计方法,可以从单个 RepSeq 样本中识别当前免疫反应中活跃的 TCR 序列,并将其应用于多种疾病患者的库中——自身免疫性疾病患者(强直性脊柱炎 [AS])、接受癌症免疫治疗的患者或受到急性感染(活黄热病 [YF] 疫苗)的患者。我们用独立的检测方法验证了该方法。ALICE 不需要进行纵向数据收集或大样本量,并且可以直接应用于大多数 RepSeq 数据集。其结果有助于识别与疾病相关的 TCR 变体,可用于诊断和合理的疫苗设计。