Suppr超能文献

从热力学角度看丛枝菌根共生中的养分交换。

Nutrient exchange in arbuscular mycorrhizal symbiosis from a thermodynamic point of view.

机构信息

SFB 1208 - Identity and Dynamics of Membrane Systems - from Molecules to Cellular Functions, Heinrich Heine Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.

Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca, 3460000, Chile.

出版信息

New Phytol. 2019 Apr;222(2):1043-1053. doi: 10.1111/nph.15646. Epub 2019 Jan 21.

Abstract

To obtain insights into the dynamics of nutrient exchange in arbuscular mycorrhizal (AM) symbiosis, we modelled mathematically the two-membrane system at the plant-fungus interface and simulated its dynamics. In computational cell biology experiments, the full range of nutrient transport pathways was tested for their ability to exchange phosphorus (P)/carbon (C)/nitrogen (N) sources. As a result, we obtained a thermodynamically justified, independent and comprehensive model of the dynamics of the nutrient exchange at the plant-fungus contact zone. The predicted optimal transporter network coincides with the transporter set independently confirmed in wet-laboratory experiments previously, indicating that all essential transporter types have been discovered. The thermodynamic analyses suggest that phosphate is released from the fungus via proton-coupled phosphate transporters rather than anion channels. Optimal transport pathways, such as cation channels or proton-coupled symporters, shuttle nutrients together with a positive charge across the membranes. Only in exceptional cases does electroneutral transport via diffusion facilitators appear to be plausible. The thermodynamic models presented here can be generalized and adapted to other forms of mycorrhiza and open the door for future studies combining wet-laboratory experiments with computational simulations to obtain a deeper understanding of the investigated phenomena.

摘要

为了深入了解丛枝菌根(AM)共生中养分交换的动态,我们对植物-真菌界面的双层膜系统进行了数学建模并模拟了其动态。在计算细胞生物学实验中,测试了所有养分运输途径,以确定它们交换磷(P)/碳(C)/氮(N)源的能力。结果,我们获得了一个在植物-真菌接触区养分交换动力学方面具有热力学合理性、独立性和全面性的模型。预测的最佳转运蛋白网络与之前在湿实验室实验中独立证实的转运蛋白集相吻合,这表明已经发现了所有必需的转运蛋白类型。热力学分析表明,真菌通过质子偶联磷酸盐转运蛋白而不是阴离子通道释放磷酸盐。最佳转运途径,如阳离子通道或质子偶联协同转运蛋白,将养分与正电荷一起穿过膜进行共转运。只有在特殊情况下,通过扩散促进剂的电中性转运似乎才是可行的。本文提出的热力学模型可以推广并适用于其他形式的菌根,并为未来的研究打开了大门,这些研究将湿实验室实验与计算模拟相结合,以更深入地了解所研究的现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/931c/6667911/bdb79fc9603d/NPH-222-1043-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验