State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Int J Parasitol. 2019 Aug;49(9):705-714. doi: 10.1016/j.ijpara.2019.04.003. Epub 2019 Jun 13.
CRISPR/Cas9 is a powerful genome editing method that has greatly facilitated functional studies in many eukaryotic organisms including malaria parasites. Due to the lack of genes encoding enzymes necessary for the non-homologous end joining DNA repair pathway, genetic manipulation of malaria parasite genomes is generally accomplished through homologous recombination requiring the presence of DNA templates. Recently, an alternative double-strand break repair pathway, microhomology-mediated end joining, was found in the Plasmodium falciparum parasite. Taking advantage of the MMEJ pathway, we developed a MMEJ-based CRISPR/Cas9 (mCRISPR) strategy to efficiently generate multiple mutant parasites simultaneously in genes with repetitive sequences. As a proof of principle, we successfully produced various size mutants in the central repeat region of the Plasmodium yoelii circumsporozoite surface protein without the use of template DNA. Monitoring mixed parasite populations and individual parasites with different sizes of CSP-CRR showed that the CSP-CRR plays a role in the development of mosquito stages, with severe developmental defects in parasites with large deletions in the repeat region. However, the majority of the csp mutant parasite clones grew similarly to the wild type P. yoelii 17XL parasite in mice. This study develops a useful technique to efficiently generate mutant parasites with deletions or insertions, and shows that the CSP-CRR plays a role in parasite development in mosquito.
CRISPR/Cas9 是一种强大的基因组编辑方法,极大地促进了包括疟原虫在内的许多真核生物的功能研究。由于缺乏非同源末端连接 DNA 修复途径所需的酶编码基因,疟原虫基因组的遗传操作通常通过同源重组来完成,需要 DNA 模板的存在。最近,在疟原虫中发现了一种替代的双链断裂修复途径,即微同源介导的末端连接。利用 MMEJ 途径,我们开发了一种基于 MMEJ 的 CRISPR/Cas9(mCRISPR)策略,可在具有重复序列的基因中同时高效地产生多个突变寄生虫。作为原理验证,我们成功地在疟原虫环状孢子蛋白的中心重复区产生了各种大小的突变体,而无需使用模板 DNA。监测具有不同大小 CSP-CRR 的混合寄生虫群体和单个寄生虫表明,CSP-CRR 在蚊子阶段的发育中起作用,在重复区有大缺失的寄生虫中发育缺陷严重。然而,大多数 csp 突变寄生虫克隆在小鼠中的生长与野生型 P. yoelii 17XL 寄生虫相似。本研究开发了一种有效的技术,可高效地产生缺失或插入突变的寄生虫,并表明 CSP-CRR 在蚊子中的寄生虫发育中起作用。