Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.
Biochem Soc Trans. 2022 Jun 30;50(3):1069-1079. doi: 10.1042/BST20210281.
The ∼30 Mb genomes of the Plasmodium parasites that cause malaria each encode ∼5000 genes, but the functions of the majority remain unknown. This is due to a paucity of functional annotation from sequence homology, which is compounded by low genetic tractability compared with many model organisms. In recent years technical breakthroughs have made forward and reverse genome-scale screens in Plasmodium possible. Furthermore, the adaptation of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Associated protein 9 (CRISPR/Cas9) technology has dramatically improved gene editing efficiency at the single gene level. Here, we review the arrival of genetic screens in malaria parasites to analyse parasite gene function at a genome-scale and their impact on understanding parasite biology. CRISPR/Cas9 screens, which have revolutionised human and model organism research, have not yet been implemented in malaria parasites due to the need for more complex CRISPR/Cas9 gene targeting vector libraries. We therefore introduce the reader to CRISPR-based screens in the related apicomplexan Toxoplasma gondii and discuss how these approaches could be adapted to develop CRISPR/Cas9 based genome-scale genetic screens in malaria parasites. Moreover, since more than half of Plasmodium genes are required for normal asexual blood-stage reproduction, and cannot be targeted using knockout methods, we discuss how CRISPR/Cas9 could be used to scale up conditional gene knockdown approaches to systematically assign function to essential genes.
引起疟疾的疟原虫的基因组大小约为 30Mb,每个基因组编码约 5000 个基因,但大多数基因的功能仍然未知。这是由于缺乏基于序列同源性的功能注释,再加上与许多模式生物相比,疟原虫的遗传可操作性较低,情况更为复杂。近年来,技术上的突破使得在疟原虫中进行正向和反向全基因组规模的筛选成为可能。此外,CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)和 CRISPR 相关蛋白 9(CRISPR/Cas9)技术的应用极大地提高了单基因水平的基因编辑效率。在这里,我们回顾了遗传筛选在疟原虫中的应用,以分析寄生虫基因在全基因组水平上的功能,以及它们对寄生虫生物学的理解的影响。CRISPR/Cas9 筛选技术已经彻底改变了人类和模式生物的研究,但由于需要更复杂的 CRISPR/Cas9 基因靶向载体文库,尚未在疟原虫中实施。因此,我们向读者介绍了相关的顶复门生物弓形虫中的基于 CRISPR 的筛选,并讨论了如何将这些方法应用于开发疟原虫基于 CRISPR/Cas9 的全基因组遗传筛选。此外,由于超过一半的疟原虫基因是正常无性血期繁殖所必需的,不能通过敲除方法进行靶向,我们还讨论了如何利用 CRISPR/Cas9 来扩大条件性基因敲低方法,以系统地赋予必需基因功能。