Cheng Ruida, Lay Nathan, Roth Holger R, Turkbey Baris, Jin Dakai, Gandler William, McCreedy Evan S, Pohida Tom, Pinto Peter, Choyke Peter, McAuliffe Matthew J, Summers Ronald M
National Institutes of Health, Center for Information Technology, Image Sciences Laboratory, Bethesda, Maryland, United States.
National Institutes of Health Clinical Center, Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, Bethesda, Maryland, United States.
J Med Imaging (Bellingham). 2019 Apr;6(2):024007. doi: 10.1117/1.JMI.6.2.024007. Epub 2019 Jun 5.
Accurate and automated prostate whole gland and central gland segmentations on MR images are essential for aiding any prostate cancer diagnosis system. Our work presents a 2-D orthogonal deep learning method to automatically segment the whole prostate and central gland from T2-weighted axial-only MR images. The proposed method can generate high-density 3-D surfaces from low-resolution ( axis) MR images. In the past, most methods have focused on axial images alone, e.g., 2-D based segmentation of the prostate from each 2-D slice. Those methods suffer the problems of over-segmenting or under-segmenting the prostate at apex and base, which adds a major contribution for errors. The proposed method leverages the orthogonal context to effectively reduce the apex and base segmentation ambiguities. It also overcomes jittering or stair-step surface artifacts when constructing a 3-D surface from 2-D segmentation or direct 3-D segmentation approaches, such as 3-D U-Net. The experimental results demonstrate that the proposed method achieves Dice similarity coefficient (DSC) for prostate and DSC of for central gland without trimming any ending contours at apex and base. The experiments illustrate the feasibility and robustness of the 2-D-based holistically nested networks with short connections method for MR prostate and central gland segmentation. The proposed method achieves segmentation results on par with the current literature.
在磁共振成像(MR)上准确且自动地分割前列腺全腺和中央腺对于辅助任何前列腺癌诊断系统至关重要。我们的工作提出了一种二维正交深度学习方法,用于从仅T2加权轴向MR图像中自动分割整个前列腺和中央腺。所提出的方法能够从低分辨率(轴)MR图像生成高密度三维表面。过去,大多数方法仅专注于轴向图像,例如从每个二维切片进行基于二维的前列腺分割。这些方法在前列腺尖部和底部存在过度分割或分割不足的问题,这是误差的主要来源。所提出的方法利用正交上下文有效地减少尖部和底部分割的模糊性。它还克服了从二维分割或直接三维分割方法(如三维U-Net)构建三维表面时出现的抖动或阶梯状表面伪影。实验结果表明,所提出的方法在不修剪尖部和底部任何末端轮廓的情况下,前列腺的骰子相似系数(DSC)达到 ,中央腺的DSC达到 。实验说明了基于二维的具有短连接的整体嵌套网络方法用于MR前列腺和中央腺分割的可行性和鲁棒性。所提出的方法取得了与当前文献相当的分割结果。