Suppr超能文献

相似文献

1
Fully automated prostate whole gland and central gland segmentation on MRI using holistically nested networks with short connections.
J Med Imaging (Bellingham). 2019 Apr;6(2):024007. doi: 10.1117/1.JMI.6.2.024007. Epub 2019 Jun 5.
2
Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks.
J Med Imaging (Bellingham). 2017 Oct;4(4):041302. doi: 10.1117/1.JMI.4.4.041302. Epub 2017 Aug 21.
5
Fully automatic segmentation on prostate MR images based on cascaded fully convolution network.
J Magn Reson Imaging. 2019 Apr;49(4):1149-1156. doi: 10.1002/jmri.26337. Epub 2018 Oct 22.
6
Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
Med Phys. 2017 Feb;44(2):533-546. doi: 10.1002/mp.12079.
8
Evaluation of Multimodal Algorithms for the Segmentation of Multiparametric MRI Prostate Images.
Comput Math Methods Med. 2020 Oct 20;2020:8861035. doi: 10.1155/2020/8861035. eCollection 2020.
9
Dual optimization based prostate zonal segmentation in 3D MR images.
Med Image Anal. 2014 May;18(4):660-73. doi: 10.1016/j.media.2014.02.009. Epub 2014 Mar 4.
10
Sequential Registration-Based Segmentation of the Prostate Gland in MR Image Volumes.
J Digit Imaging. 2016 Apr;29(2):254-63. doi: 10.1007/s10278-015-9844-y.

引用本文的文献

1
Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review.
Radiol Artif Intell. 2024 Jul;6(4):e230138. doi: 10.1148/ryai.230138.
2
Deep learning performance on MRI prostate gland segmentation: evaluation of two commercially available algorithms compared with an expert radiologist.
J Med Imaging (Bellingham). 2024 Jan;11(1):015002. doi: 10.1117/1.JMI.11.1.015002. Epub 2024 Feb 22.
3
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.
Proc IEEE Inst Electr Electron Eng. 2021 May;109(5):820-838. doi: 10.1109/JPROC.2021.3054390. Epub 2021 Feb 26.
4
Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks.
Eur Radiol. 2023 Jul;33(7):5087-5096. doi: 10.1007/s00330-023-09410-9. Epub 2023 Jan 24.
5
Automatic segmentation of prostate zonal anatomy on MRI: a systematic review of the literature.
Insights Imaging. 2022 Dec 21;13(1):202. doi: 10.1186/s13244-022-01340-2.
6
Deep learning algorithm performs similarly to radiologists in the assessment of prostate volume on MRI.
Eur Radiol. 2023 Apr;33(4):2519-2528. doi: 10.1007/s00330-022-09239-8. Epub 2022 Nov 12.
7
A review of artificial intelligence in prostate cancer detection on imaging.
Ther Adv Urol. 2022 Oct 10;14:17562872221128791. doi: 10.1177/17562872221128791. eCollection 2022 Jan-Dec.
8
Automatic quadriceps and patellae segmentation of MRI with cascaded U -Net and SASSNet deep learning model.
Med Phys. 2022 Jan;49(1):443-460. doi: 10.1002/mp.15335. Epub 2021 Nov 22.
10
Harnessing clinical annotations to improve deep learning performance in prostate segmentation.
PLoS One. 2021 Jun 25;16(6):e0253829. doi: 10.1371/journal.pone.0253829. eCollection 2021.

本文引用的文献

1
Deeply Supervised Salient Object Detection with Short Connections.
IEEE Trans Pattern Anal Mach Intell. 2019 Apr;41(4):815-828. doi: 10.1109/TPAMI.2018.2815688. Epub 2018 Mar 14.
2
Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
Med Image Anal. 2018 Apr;45:94-107. doi: 10.1016/j.media.2018.01.006. Epub 2018 Feb 1.
3
Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks.
J Med Imaging (Bellingham). 2017 Oct;4(4):041302. doi: 10.1117/1.JMI.4.4.041302. Epub 2017 Aug 21.
4
Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool.
BMC Med Imaging. 2015 Aug 12;15:29. doi: 10.1186/s12880-015-0068-x.
5
Representation learning: a unified deep learning framework for automatic prostate MR segmentation.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):254-61. doi: 10.1007/978-3-642-40763-5_32.
6
Automated prostate segmentation in whole-body MRI scans for epidemiological studies.
Phys Med Biol. 2013 Sep 7;58(17):5899-915. doi: 10.1088/0031-9155/58/17/5899. Epub 2013 Aug 6.
7
Multifeature landmark-free active appearance models: application to prostate MRI segmentation.
IEEE Trans Med Imaging. 2012 Aug;31(8):1638-50. doi: 10.1109/TMI.2012.2201498. Epub 2012 May 30.
8
N4ITK: improved N3 bias correction.
IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20. doi: 10.1109/TMI.2010.2046908. Epub 2010 Apr 8.
9
Automatic model-based segmentation of the heart in CT images.
IEEE Trans Med Imaging. 2008 Sep;27(9):1189-201. doi: 10.1109/TMI.2008.918330.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验