Suppr超能文献

利用临床注释提高前列腺分割中深度学习的性能。

Harnessing clinical annotations to improve deep learning performance in prostate segmentation.

机构信息

University of California, Los Angeles, Los Angeles, CA, United States of America.

Western University of Health Sciences, Pomona, CA, United States of America.

出版信息

PLoS One. 2021 Jun 25;16(6):e0253829. doi: 10.1371/journal.pone.0253829. eCollection 2021.

Abstract

PURPOSE

Developing large-scale datasets with research-quality annotations is challenging due to the high cost of refining clinically generated markup into high precision annotations. We evaluated the direct use of a large dataset with only clinically generated annotations in development of high-performance segmentation models for small research-quality challenge datasets.

MATERIALS AND METHODS

We used a large retrospective dataset from our institution comprised of 1,620 clinically generated segmentations, and two challenge datasets (PROMISE12: 50 patients, ProstateX-2: 99 patients). We trained a 3D U-Net convolutional neural network (CNN) segmentation model using our entire dataset, and used that model as a template to train models on the challenge datasets. We also trained versions of the template model using ablated proportions of our dataset, and evaluated the relative benefit of those templates for the final models. Finally, we trained a version of the template model using an out-of-domain brain cancer dataset, and evaluated the relevant benefit of that template for the final models. We used five-fold cross-validation (CV) for all training and evaluation across our entire dataset.

RESULTS

Our model achieves state-of-the-art performance on our large dataset (mean overall Dice 0.916, average Hausdorff distance 0.135 across CV folds). Using this model as a pre-trained template for refining on two external datasets significantly enhanced performance (30% and 49% enhancement in Dice scores respectively). Mean overall Dice and mean average Hausdorff distance were 0.912 and 0.15 for the ProstateX-2 dataset, and 0.852 and 0.581 for the PROMISE12 dataset. Using even small quantities of data to train the template enhanced performance, with significant improvements using 5% or more of the data.

CONCLUSION

We trained a state-of-the-art model using unrefined clinical prostate annotations and found that its use as a template model significantly improved performance in other prostate segmentation tasks, even when trained with only 5% of the original dataset.

摘要

目的

由于将临床生成的标记细化为高精度注释的成本很高,因此开发具有研究质量注释的大规模数据集具有挑战性。我们评估了仅使用具有临床生成注释的大型数据集直接用于开发针对小型研究质量挑战数据集的高性能分割模型的方法。

材料与方法

我们使用了来自我们机构的一个大型回顾性数据集,其中包含 1620 个临床生成的分割,以及两个挑战数据集(PROMISE12:50 个患者,ProstateX-2:99 个患者)。我们使用整个数据集训练了一个 3D U-Net 卷积神经网络(CNN)分割模型,并使用该模型作为模板在挑战数据集上训练模型。我们还使用数据集的消融比例训练了模板模型的版本,并评估了这些模板对最终模型的相对益处。最后,我们使用一个域外脑癌数据集训练了模板模型的一个版本,并评估了该模板对最终模型的相关益处。我们在整个数据集中使用五重交叉验证(CV)进行所有训练和评估。

结果

我们的模型在我们的大型数据集上实现了最先进的性能(平均整体骰子系数为 0.916,在 CV 折叠中平均 Hausdorff 距离为 0.135)。使用该模型作为预训练模板在两个外部数据集上进行细化显著提高了性能(Dice 分数分别提高了 30%和 49%)。ProstateX-2 数据集的平均整体骰子系数和平均平均 Hausdorff 距离分别为 0.912 和 0.15,PROMISE12 数据集分别为 0.852 和 0.581。使用少量数据训练模板也可以提高性能,使用 5%或更多的数据可以显著提高性能。

结论

我们使用未经细化的临床前列腺注释训练了一个最先进的模型,发现即使使用原始数据集的 5%,其作为模板模型也可以显著提高其他前列腺分割任务的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f2/8232529/504e5325577c/pone.0253829.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验