Suppr超能文献

与英国生物库影像学研究中多模态影像学上潜在严重偶然发现和严重最终诊断相关的因素:一项前瞻性队列研究。

Factors associated with potentially serious incidental findings and with serious final diagnoses on multi-modal imaging in the UK Biobank Imaging Study: A prospective cohort study.

机构信息

Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom.

Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, United Kingdom.

出版信息

PLoS One. 2019 Jun 17;14(6):e0218267. doi: 10.1371/journal.pone.0218267. eCollection 2019.

Abstract

BACKGROUND

Feedback of potentially serious incidental findings (PSIFs) to imaging research participants generates clinical assessment in most cases. Understanding the factors associated with increased risks of PSIFs and of serious final diagnoses may influence individuals' decisions to participate in imaging research and will inform the design of PSIFs protocols for future research studies. We aimed to determine whether, and to what extent, socio-demographic, lifestyle, other health-related factors and PSIFs protocol are associated with detection of both a PSIF and a final diagnosis of serious disease.

METHODS AND FINDINGS

Our cohort consisted of all UK Biobank participants who underwent imaging up to December 2015 (n = 7334, median age 63, 51.9% women). Brain, cardiac and body magnetic resonance, and dual-energy x-ray absorptiometry images from the first 1000 participants were reviewed systematically by radiologists for PSIFs. Thereafter, radiographers flagged concerning images for radiologists' review. We classified final diagnoses as serious or not using data from participant surveys and clinical correspondence from GPs up to six months following imaging (either participant or GP correspondence, or both, were available for 93% of participants with PSIFs). We used binomial logistic regression models to investigate associations between age, sex, ethnicity, socio-economic deprivation, private healthcare use, alcohol intake, diet, physical activity, smoking, body mass index and morbidity, with both PSIFs and serious final diagnoses. Systematic radiologist review generated 13 times more PSIFs than radiographer flagging (179/1000 [17.9%] versus 104/6334 [1.6%]; age- and sex-adjusted OR 13.3 [95% confidence interval (CI) 10.3-17.1] p<0.001) and proportionally fewer serious final diagnoses (21/179 [11.7%]; 33/104 [31.7%]). Risks of both PSIFs and of serious final diagnoses increased with age (sex-adjusted ORs [95% CI] for oldest [67-79 years] versus youngest [44-58 years] participants for PSIFs and serious final diagnoses respectively: 1.59 [1.07-2.38] and 2.79 [0.86 to 9.0] for systematic radiologist review; 1.88 [1.14-3.09] and 2.99 [1.09-8.19] for radiographer flagging). No other factor was significantly associated with either PSIFs or serious final diagnoses. Our study is the largest so far to investigate the factors associated with PSIFs and serious final diagnoses, but despite this, we still may have missed some associations due to sparsity of these outcomes within our cohort and small numbers within some exposure categories.

CONCLUSION

Risks of PSIFs and serious final diagnosis are substantially influenced by PSIFs protocol and to a lesser extent by age. As only 1/5 PSIFs represent serious disease, evidence-based PSIFs protocols are paramount to minimise over-investigation of healthy research participants and diversion of limited health services away from patients in need.

摘要

背景

向影像学研究参与者反馈潜在严重偶然发现(PSIFs)会在大多数情况下引发临床评估。了解与 PSIFs 风险增加和严重最终诊断相关的因素可能会影响个人参与影像学研究的决策,并为未来研究的 PSIFs 协议设计提供信息。我们旨在确定社会人口统计学、生活方式、其他健康相关因素和 PSIFs 协议是否与 PSIFs 和严重疾病的最终诊断的检测相关,以及相关程度如何。

方法和发现

我们的队列包括截至 2015 年 12 月接受影像学检查的所有英国生物库参与者(n=7334,中位年龄 63 岁,51.9%为女性)。前 1000 名参与者的脑部、心脏和身体磁共振成像以及双能 X 射线吸收仪图像由放射科医生进行系统性审查,以寻找 PSIFs。此后,放射技师会为放射科医生的审查标记可疑图像。我们使用来自参与者调查和全科医生的临床通信数据,在影像学检查后六个月内将最终诊断分类为严重或不严重(对于有 PSIFs 的 93%的参与者,要么是参与者的通信,要么是全科医生的通信,或者两者都有)。我们使用二项逻辑回归模型来研究年龄、性别、种族、社会经济贫困、私人医疗保健使用、饮酒、饮食、身体活动、吸烟、体重指数和发病情况与 PSIFs 和严重最终诊断之间的关联。系统的放射科医生审查比放射技师标记产生的 PSIFs 多 13 倍(179/1000[17.9%]比 104/6334[1.6%];年龄和性别调整的 OR 为 13.3[95%置信区间(CI)为 10.3-17.1],p<0.001),且严重最终诊断的比例较低(21/179[11.7%]比 33/104[31.7%])。PSIFs 和严重最终诊断的风险均随年龄增长而增加(对于 PSIFs 和严重最终诊断,年龄最大[67-79 岁]与年龄最小[44-58 岁]参与者相比,年龄调整的 OR[95%CI]分别为:1.59[1.07-2.38]和 2.79[0.86 至 9.0];对于系统的放射科医生审查;1.88[1.14-3.09]和 2.99[1.09-8.19]对于放射技师标记)。其他因素与 PSIFs 或严重最终诊断均无显著关联。我们的研究是迄今为止最大规模的研究,旨在调查与 PSIFs 和严重最终诊断相关的因素,但尽管如此,由于我们队列中这些结果的稀疏性以及某些暴露类别中数量较少,我们仍可能遗漏了一些关联。

结论

PSIFs 和严重最终诊断的风险在很大程度上受 PSIFs 协议的影响,其次受年龄的影响。由于只有 1/5 的 PSIFs 代表严重疾病,因此基于证据的 PSIFs 协议对于最大限度地减少对健康研究参与者的过度检查以及将有限的卫生资源从有需要的患者转移至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/151a/6576786/65deb6a59189/pone.0218267.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验