Data Science Institute, Imperial College London, London, UK.
Department of Brain Sciences, Imperial College London, London, UK.
Nat Med. 2020 Oct;26(10):1654-1662. doi: 10.1038/s41591-020-1009-y. Epub 2020 Aug 24.
Differences in cardiac and aortic structure and function are associated with cardiovascular diseases and a wide range of other types of disease. Here we analyzed cardiovascular magnetic resonance images from a population-based study, the UK Biobank, using an automated machine-learning-based analysis pipeline. We report a comprehensive range of structural and functional phenotypes for the heart and aorta across 26,893 participants, and explore how these phenotypes vary according to sex, age and major cardiovascular risk factors. We extended this analysis with a phenome-wide association study, in which we tested for correlations of a wide range of non-imaging phenotypes of the participants with imaging phenotypes. We further explored the associations of imaging phenotypes with early-life factors, mental health and cognitive function using both observational analysis and Mendelian randomization. Our study illustrates how population-based cardiac and aortic imaging phenotypes can be used to better define cardiovascular disease risks as well as heart-brain health interactions, highlighting new opportunities for studying disease mechanisms and developing image-based biomarkers.
心脏和主动脉结构和功能的差异与心血管疾病以及广泛的其他类型疾病有关。在这里,我们使用基于自动化机器学习的分析管道分析了一项基于人群的研究——英国生物库(UK Biobank)的心血管磁共振图像。我们报告了 26893 名参与者的心脏和主动脉的一系列综合结构和功能表型,并探讨了这些表型如何根据性别、年龄和主要心血管危险因素而变化。我们通过一项表型全基因组关联研究扩展了这项分析,我们在其中测试了参与者的各种非成像表型与成像表型之间的相关性。我们进一步使用观察性分析和孟德尔随机化方法探讨了成像表型与生命早期因素、心理健康和认知功能之间的关联。我们的研究说明了如何使用基于人群的心脏和主动脉成像表型来更好地定义心血管疾病风险以及心脏-大脑健康相互作用,突出了研究疾病机制和开发基于图像的生物标志物的新机会。