Suppr超能文献

基于人群的心脏和主动脉结构与功能的表型全基因组关联研究。

A population-based phenome-wide association study of cardiac and aortic structure and function.

机构信息

Data Science Institute, Imperial College London, London, UK.

Department of Brain Sciences, Imperial College London, London, UK.

出版信息

Nat Med. 2020 Oct;26(10):1654-1662. doi: 10.1038/s41591-020-1009-y. Epub 2020 Aug 24.

Abstract

Differences in cardiac and aortic structure and function are associated with cardiovascular diseases and a wide range of other types of disease. Here we analyzed cardiovascular magnetic resonance images from a population-based study, the UK Biobank, using an automated machine-learning-based analysis pipeline. We report a comprehensive range of structural and functional phenotypes for the heart and aorta across 26,893 participants, and explore how these phenotypes vary according to sex, age and major cardiovascular risk factors. We extended this analysis with a phenome-wide association study, in which we tested for correlations of a wide range of non-imaging phenotypes of the participants with imaging phenotypes. We further explored the associations of imaging phenotypes with early-life factors, mental health and cognitive function using both observational analysis and Mendelian randomization. Our study illustrates how population-based cardiac and aortic imaging phenotypes can be used to better define cardiovascular disease risks as well as heart-brain health interactions, highlighting new opportunities for studying disease mechanisms and developing image-based biomarkers.

摘要

心脏和主动脉结构和功能的差异与心血管疾病以及广泛的其他类型疾病有关。在这里,我们使用基于自动化机器学习的分析管道分析了一项基于人群的研究——英国生物库(UK Biobank)的心血管磁共振图像。我们报告了 26893 名参与者的心脏和主动脉的一系列综合结构和功能表型,并探讨了这些表型如何根据性别、年龄和主要心血管危险因素而变化。我们通过一项表型全基因组关联研究扩展了这项分析,我们在其中测试了参与者的各种非成像表型与成像表型之间的相关性。我们进一步使用观察性分析和孟德尔随机化方法探讨了成像表型与生命早期因素、心理健康和认知功能之间的关联。我们的研究说明了如何使用基于人群的心脏和主动脉成像表型来更好地定义心血管疾病风险以及心脏-大脑健康相互作用,突出了研究疾病机制和开发基于图像的生物标志物的新机会。

相似文献

10
Genetic and functional insights into the fractal structure of the heart.对心脏分形结构的遗传和功能见解。
Nature. 2020 Aug;584(7822):589-594. doi: 10.1038/s41586-020-2635-8. Epub 2020 Aug 19.

引用本文的文献

3
How to measure and model cardiovascular aging.如何测量和模拟心血管衰老。
Cardiovasc Res. 2025 Aug 28;121(10):1489-1508. doi: 10.1093/cvr/cvaf138.
7
Biological heart and brain ageing in subjects with cardiovascular diseases.患有心血管疾病的受试者的生物性心脏和大脑衰老
Front Cardiovasc Med. 2025 Jul 7;12:1569423. doi: 10.3389/fcvm.2025.1569423. eCollection 2025.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验