Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany.
Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia.
Nat Plants. 2019 Jul;5(7):706-714. doi: 10.1038/s41477-019-0445-5. Epub 2019 Jun 17.
The world cropping area for wheat exceeds that of any other crop, and high grain yields in intensive wheat cropping systems are essential for global food security. Breeding has raised yields dramatically in high-input production systems; however, selection under optimal growth conditions is widely believed to diminish the adaptive capacity of cultivars to less optimal cropping environments. Here, we demonstrate, in a large-scale study spanning five decades of wheat breeding progress in western Europe, where grain yields are among the highest worldwide, that breeding for high performance in fact enhances cultivar performance not only under optimal production conditions but also in production systems with reduced agrochemical inputs. New cultivars incrementally accumulated genetic variants conferring favourable effects on key yield parameters, disease resistance, nutrient use efficiency, photosynthetic efficiency and grain quality. Combining beneficial, genome-wide haplotypes could help breeders to more efficiently exploit available genetic variation, optimizing future yield potential in more sustainable production systems.
全世界种植小麦的面积超过其他任何作物,集约型小麦种植系统的高粮食产量对于全球粮食安全至关重要。通过培育,在高投入的生产系统中,小麦的产量有了显著提高;然而,在最适生长条件下进行选择,被广泛认为会降低品种对较差种植环境的适应能力。在这里,我们在一项跨越五十年的西欧小麦育种进展的大规模研究中证明,在全球范围内,粮食产量最高的地区之一,实际上,培育高表现的品种不仅提高了品种在最适生产条件下的表现,而且提高了在减少农用化学品投入的生产系统中的表现。新的品种逐渐积累了有利于关键产量参数、抗病性、养分利用效率、光合作用效率和谷物品质的遗传变异。结合有益的全基因组单倍型可以帮助育种者更有效地利用可用的遗传变异,优化未来更可持续生产系统中的产量潜力。