Suppr超能文献

使用针对特定原因的危险的灵活回归模型估计调整后的特定原因累积概率。

Estimation of the adjusted cause-specific cumulative probability using flexible regression models for the cause-specific hazards.

机构信息

Cancer Research UK Cancer Survival Group, Faculty of Epidemiology and Population Health, Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.

Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.

出版信息

Stat Med. 2019 Sep 10;38(20):3896-3910. doi: 10.1002/sim.8209. Epub 2019 Jun 18.

Abstract

In competing risks setting, we account for death according to a specific cause and the quantities of interest are usually the cause-specific hazards (CSHs) and the cause-specific cumulative probabilities. A cause-specific cumulative probability can be obtained with a combination of the CSHs or via the subdistribution hazard. Here, we modeled the CSH with flexible hazard-based regression models using B-splines for the baseline hazard and time-dependent (TD) effects. We derived the variance of the cause-specific cumulative probabilities at the population level using the multivariate delta method and showed how we could easily quantify the impact of a covariate on the cumulative probability scale using covariate-adjusted cause-specific cumulative probabilities and their difference. We conducted a simulation study to evaluate the performance of this approach in its ability to estimate the cumulative probabilities using different functions for the cause-specific log baseline hazard and with or without a TD effect. In the scenario with TD effect, we tested both well-specified and misspecified models. We showed that the flexible regression models perform nearly as well as the nonparametric method, if we allow enough flexibility for the baseline hazards. Moreover, neglecting the TD effect hardly affects the cumulative probabilities estimates of the whole population but impacts them in the various subgroups. We illustrated our approach using data from people diagnosed with monoclonal gammopathy of undetermined significance and provided the R-code to derive those quantities, as an extension of the R-package mexhaz.

摘要

在竞争风险设定中,我们根据特定原因来计算死亡人数,而感兴趣的数量通常是特定原因的风险(CSHs)和特定原因的累积概率。特定原因的累积概率可以通过 CSH 的组合或通过子分布风险来获得。在这里,我们使用 B 样条对基本风险和时间依赖性(TD)效应进行灵活的基于风险的回归模型来建模 CSH。我们使用多元 delta 方法在人群水平上推导出特定原因的累积概率的方差,并展示了如何使用协变量调整后的特定原因累积概率及其差异,在累积概率尺度上量化协变量对累积概率的影响。我们进行了一项模拟研究,以评估该方法在使用不同的特定原因对数基线风险函数和是否存在 TD 效应来估计累积概率方面的性能。在具有 TD 效应的情况下,我们测试了指定良好和指定不当的模型。我们表明,如果我们允许基本风险有足够的灵活性,那么灵活的回归模型的表现几乎与非参数方法一样好。此外,忽略 TD 效应几乎不会影响整个人群的累积概率估计,但会影响各个亚组的累积概率估计。我们使用诊断为意义未明的单克隆丙种球蛋白血症的人的数据说明了我们的方法,并提供了推导这些数量的 R 代码,作为 R 包 mexhaz 的扩展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92af/6771712/7a4d4754f29f/SIM-38-3896-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验