‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey.
§Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208.
Mol Cell Proteomics. 2019 Sep;18(9):1756-1771. doi: 10.1074/mcp.RA119.001446. Epub 2019 Jun 20.
Epithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal. We identified 314 proteins out of more than 6,000 unique proteins and 871 phosphopeptides out of more than 7,000 unique phosphopeptides as differentially regulated. We found that phosphoproteome is more unstable and prone to changes during EMT compared with the proteome and multiple alterations at proteome level are not thoroughly represented by transcriptional data highlighting the necessity of proteome level analysis. We discovered cell state specific signaling pathways, such as Hippo, sphingolipid signaling, and unfolded protein response (UPR) by modeling the networks of regulated proteins and potential kinase-substrate groups. We identified two novel factors for EMT whose expression increased on EMT induction: DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) and cluster of differentiation 81 (CD81). Suppression of DNAJB4 or CD81 in mesenchymal breast cancer cells resulted in decreased cell migration and led to reduced primary tumor growth, extravasation, and lung metastasis Overall, we performed the global proteomic and phosphoproteomic analyses of EMT, identified and validated new mRNA and/or protein level modulators of EMT. This work also provides a unique platform and resource for future studies focusing on metastasis and drug resistance.
上皮-间质转化 (EMT) 是由复杂的信号事件驱动的,这些信号事件诱导了剧烈的生化和形态变化,使上皮细胞转化为癌细胞。然而,潜在的分子机制仍然难以捉摸。在这里,我们使用基于质谱的定量蛋白质组学方法来系统地分析驱动人乳腺上皮 (HMLE) 细胞分化为间充质的翻译后生化变化。我们鉴定出 314 种蛋白质,其中超过 6000 种是独特蛋白质,871 种磷酸肽,其中超过 7000 种是独特磷酸肽,这些蛋白质和磷酸肽被认为是差异调节的。我们发现,与蛋白质组相比,磷酸蛋白质组在 EMT 过程中更不稳定,更容易发生变化,而且蛋白质组水平的多个改变并不能被转录数据完全代表,这突出了蛋白质组水平分析的必要性。我们通过构建调控蛋白和潜在激酶-底物群的网络,发现了 Hippo、鞘脂信号和未折叠蛋白反应 (UPR) 等细胞状态特异性信号通路。我们鉴定出两种 EMT 的新因子,它们在 EMT 诱导时表达增加:热休克蛋白家族 40 成员 B4 (DNAJB4) 和分化簇 81 (CD81)。在间充质乳腺癌细胞中抑制 DNAJB4 或 CD81 可导致细胞迁移减少,并导致原发性肿瘤生长、渗出和肺转移减少。总之,我们对 EMT 进行了全局蛋白质组学和磷酸蛋白质组学分析,鉴定并验证了 EMT 的新的 mRNA 和/或蛋白质水平调节剂。这项工作还为未来专注于转移和耐药性的研究提供了一个独特的平台和资源。