Suppr超能文献

基于深度学习的多端口射频和亚太赫兹无源器件及集成电路的广义逆设计

Deep-learning enabled generalized inverse design of multi-port radio-frequency and sub-terahertz passives and integrated circuits.

作者信息

Karahan Emir Ali, Liu Zheng, Gupta Aggraj, Shao Zijian, Zhou Jonathan, Khankhoje Uday, Sengupta Kaushik

机构信息

Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA.

Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India.

出版信息

Nat Commun. 2024 Dec 30;15(1):10734. doi: 10.1038/s41467-024-54178-1.

Abstract

Millimeter-wave and terahertz integrated circuits and chips are expected to serve as the backbone for future wireless networks and high resolution sensing. However, design of these integrated circuits and chips can be quite complex, requiring years of human expertise, careful tailoring of hand crafted circuit topologies and co-design with parameterized and pre-selected templates of electromagnetic structures. These structures (radiative and non-radiative, single-port and multi-ports) are subsequently optimized through ad-hoc methods and parameter sweeps. Such bottom-up approaches with pre-selected regular topologies also fundamentally limit the design space. Here, we demonstrate a universal inverse design approach for arbitrary-shaped complex multi-port electromagnetic structures with designer radiative and scattering properties, co-designed with active circuits. To allow such universalization, we employ deep learning based models, and demonstrate synthesis with several examples of complex mm-Wave passive structures and end-to-end integrated mm-Wave broadband circuits. The presented inverse design methodology, that produces the designs in minutes, can be transformative in opening up a new, previously inaccessible design space.

摘要

毫米波和太赫兹集成电路及芯片有望成为未来无线网络和高分辨率传感的支柱。然而,这些集成电路和芯片的设计可能相当复杂,需要多年的人类专业知识,精心定制手工制作的电路拓扑结构,并与电磁结构的参数化和预选模板进行协同设计。这些结构(辐射和非辐射、单端口和多端口)随后通过特殊方法和参数扫描进行优化。这种具有预选规则拓扑的自底向上方法也从根本上限制了设计空间。在这里,我们展示了一种通用的逆向设计方法,用于具有设计者辐射和散射特性的任意形状复杂多端口电磁结构,并与有源电路协同设计。为了实现这种通用性,我们采用基于深度学习的模型,并通过几个复杂毫米波无源结构和端到端集成毫米波宽带电路的例子来演示合成。所提出的逆向设计方法能够在几分钟内生成设计,在开辟一个以前无法进入的新设计空间方面可能具有变革性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9223/11685664/1296796d4182/41467_2024_54178_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验