Suppr超能文献

利用由水凝胶/3D 纤维支架构成的生物工程杂交支架实现癌细胞的上皮-间充质转化。

Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework.

机构信息

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

Biological Sciences and Technology Division, Biotechnology Group, CSIR-North East Institute of Science & Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, 785006, India.

出版信息

Sci Rep. 2019 Jun 20;9(1):8997. doi: 10.1038/s41598-019-45384-9.

Abstract

Cancer cells undergoing epithelial-mesenchymal transition (EMT) acquire stem cell-like phenotype associated with malignant behaviour, chemoresistance, and relapse. Current two-dimensional (2D) in-vitro culture models of tumorigenesis are inadequate to replicate the complexity of in-vivo microenvironment. Therefore, the generation of functional three-dimensional (3D) constructs is a fundamental prerequisite to form multi-cellular tumour spheroids for studying basic pathological mechanisms. In this study, we focused on two major points (i) designing and fabrication of 3D hybrid scaffolds comprising electrospun fibers with cancer cells embedded within hydrogels, and (ii) determining the potential roles of 3D hybrid scaffolds associated with EMT in cancer progression and metastasis. Our findings revealed that 3D hybrid scaffold enhances cell proliferation and induces cancer cells to undergo EMT, as demonstrated by significant up-regulation of EMT associated transcriptional factors including Snail1, Zeb1, and Twist2; and mesenchymal markers whereas epithelial marker, E-Cadherin was downregulated. Remarkably, this induction is independent of cancer cell-type as similar results were obtained for breast cancer cells, MDA-MB-231 and gastric cancer cells, MKN74. Moreover, the hybrid scaffolds enrich aggressive cancer cells with stem cell properties. We showed that our 3D scaffolds could trigger EMT of cancer cells which could provide a useful model for studying anticancer therapeutics against metastasis.

摘要

癌细胞在经历上皮-间充质转化(EMT)后获得与恶性行为、化疗耐药和复发相关的干细胞样表型。目前肿瘤发生的二维(2D)体外培养模型不足以复制体内微环境的复杂性。因此,生成功能性三维(3D)结构是形成用于研究基本病理机制的多细胞肿瘤球体的基本前提。在这项研究中,我们重点关注两个主要方面:(i)设计和制造包含嵌入水凝胶中的癌细胞的 3D 杂交支架的纤维,(ii)确定与 EMT 相关的 3D 杂交支架在癌症进展和转移中的潜在作用。我们的研究结果表明,3D 杂交支架可增强细胞增殖并诱导癌细胞经历 EMT,这表现为 EMT 相关转录因子(包括 Snail1、Zeb1 和 Twist2)和间充质标志物的显著上调,而上皮标志物 E-钙粘蛋白则下调。值得注意的是,这种诱导是独立于癌细胞类型的,因为乳腺癌细胞 MDA-MB-231 和胃癌细胞 MKN74 也得到了类似的结果。此外,杂交支架富集具有干细胞特性的侵袭性癌细胞。我们表明,我们的 3D 支架可以触发癌细胞的 EMT,这可以为研究针对转移的抗癌治疗提供有用的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc5/6586872/45d142be0de7/41598_2019_45384_Fig1_HTML.jpg

相似文献

2
Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix.
Biochem Biophys Res Commun. 2018 Apr 15;498(4):1052-1057. doi: 10.1016/j.bbrc.2018.03.114. Epub 2018 Mar 17.
3
Bioengineered 3D Scaffolds in Cancer Research: Focus on Epithelial to Mesenchymal Transition and Drug Screening.
Curr Pharm Des. 2017;23(11):1710-1720. doi: 10.2174/1381612822666161201151832.
4
An integrative alginate-based 3D in vitro model to explore epithelial-stromal cell dynamics in the breast tumor microenvironment.
Carbohydr Polym. 2024 Oct 15;342:122363. doi: 10.1016/j.carbpol.2024.122363. Epub 2024 Jun 4.
5
ZEB1 is neither sufficient nor required for epithelial-mesenchymal transition in LS174T colorectal cancer cells.
Biochem Biophys Res Commun. 2017 Jan 22;482(4):1226-1232. doi: 10.1016/j.bbrc.2016.12.017. Epub 2016 Dec 5.
6
An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis.
Biofabrication. 2017 Feb 7;9(1):015016. doi: 10.1088/1758-5090/aa5510.
9
The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs.
Biomaterials. 2012 Feb;33(5):1437-44. doi: 10.1016/j.biomaterials.2011.10.056. Epub 2011 Nov 10.

引用本文的文献

3
Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling.
In Vitro Model. 2023 Jan 27;2(1-2):1-23. doi: 10.1007/s44164-023-00043-2. eCollection 2023 Apr.
4
Facilitation of Tumor Stroma-Targeted Therapy: Model Difficulty and Co-Culture Organoid Method.
Pharmaceuticals (Basel). 2025 Jan 8;18(1):62. doi: 10.3390/ph18010062.
5
Liquid Crystalline Networks Hamper the Malignancy of Cancer Cells.
Adv Healthc Mater. 2025 Mar;14(7):e2403607. doi: 10.1002/adhm.202403607. Epub 2025 Jan 19.
6
Development of 3D skin equivalents for application in photodynamic biostimulation therapy assays using curcumin nanocapsules.
Heliyon. 2024 Jun 11;10(12):e32808. doi: 10.1016/j.heliyon.2024.e32808. eCollection 2024 Jun 30.
7
Cancer 3D Models for Metallodrug Preclinical Testing.
Int J Mol Sci. 2023 Jul 25;24(15):11915. doi: 10.3390/ijms241511915.
8
Biophysical cues of in vitro biomaterials-based artificial extracellular matrix guide cancer cell plasticity.
Mater Today Bio. 2023 Mar 8;19:100607. doi: 10.1016/j.mtbio.2023.100607. eCollection 2023 Apr.
9
Type-2 epithelial-mesenchymal transition in oral mucosal nonneoplastic diseases.
Front Immunol. 2022 Oct 31;13:1020768. doi: 10.3389/fimmu.2022.1020768. eCollection 2022.
10
Network Analysis Identifies Phase Transitions for Tumor With Interacting Cells.
Front Physiol. 2022 Jul 1;13:865561. doi: 10.3389/fphys.2022.865561. eCollection 2022.

本文引用的文献

1
A dual crosslinking strategy to tailor rheological properties of gelatin methacryloyl.
Int J Bioprint. 2017 Jul 11;3(2):003. doi: 10.18063/IJB.2017.02.003. eCollection 2017.
2
Tailoring the morphology of emulsion-templated porous polymers.
Soft Matter. 2006 Jun 20;2(7):608-616. doi: 10.1039/b603211g.
4
Synthesis and Characterization of Types A and B Gelatin Methacryloyl for Bioink Applications.
Materials (Basel). 2016 Sep 24;9(10):797. doi: 10.3390/ma9100797.
5
Electrospun 3D Fibrous Scaffolds for Chronic Wound Repair.
Materials (Basel). 2016 Apr 6;9(4):272. doi: 10.3390/ma9040272.
6
Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis.
Sci Rep. 2016 Aug 9;6:31036. doi: 10.1038/srep31036.
7
Regulation of Epithelial-to-Mesenchymal Transition Using Biomimetic Fibrous Scaffolds.
ACS Appl Mater Interfaces. 2016 Jul 20;8(28):17915-26. doi: 10.1021/acsami.6b05646. Epub 2016 Jul 5.
8
Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting.
Molecules. 2016 May 25;21(6):685. doi: 10.3390/molecules21060685.
10
Remodeling Components of the Tumor Microenvironment to Enhance Cancer Therapy.
Front Oncol. 2015 Oct 14;5:214. doi: 10.3389/fonc.2015.00214. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验