Suppr超能文献

简便一锅法合成甲基丙烯酰化明胶(GelMA)的精确调控

Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis.

作者信息

Shirahama Hitomi, Lee Bae Hoon, Tan Lay Poh, Cho Nam-Joon

机构信息

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore.

School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore.

出版信息

Sci Rep. 2016 Aug 9;6:31036. doi: 10.1038/srep31036.

Abstract

Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10-20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules.

摘要

明胶-甲基丙烯酰(GelMA)是生物应用中最常用的可光聚合生物材料之一。然而,GelMA的合成仍不尽人意,因为其反应参数尚未得到充分研究。本研究的目的是通过系统地考察包括碳酸盐-碳酸氢盐(CB)缓冲液摩尔浓度、初始pH调节、甲基丙烯酸(MAA)浓度、明胶浓度、反应温度和反应时间等反应参数,建立一条有效且可控的GelMA合成优化路线。我们采用了多种分析技术来测定取代度(DS),并对合成的聚合物进行了详细的结构分析。结果使我们能够优化GelMA的合成,显示出在使MAA水解最小化的同时平衡氨基去质子化的最佳条件,这导致了几乎完全取代。优化后的条件(MAA与明胶的低进料比(0.1 mL/g)、pH 9的0.25 M CB缓冲液和10-20%的明胶浓度)实现了一个简化的反应方案,只需在一锅法中一步加入MAA就能生产出高取代度的GelMA。展望未来,这些最佳条件不仅能实现简便的一锅法GelMA合成,还能指导研究人员探索其他生物大分子的高效、高甲基丙烯酰化反应。

相似文献

1
Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis.
Sci Rep. 2016 Aug 9;6:31036. doi: 10.1038/srep31036.
2
Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels.
Macromol Biosci. 2020 Dec;20(12):e2000183. doi: 10.1002/mabi.202000183. Epub 2020 Aug 28.
3
5
Structure and Properties of Gelatin Methacryloyl (GelMA) Synthesized in Different Reaction Systems.
Biomacromolecules. 2023 Jun 12;24(6):2928-2941. doi: 10.1021/acs.biomac.3c00302. Epub 2023 May 22.
6
Permeability mapping of gelatin methacryloyl hydrogels.
Acta Biomater. 2018 Sep 1;77:38-47. doi: 10.1016/j.actbio.2018.07.006. Epub 2018 Jul 4.
7
Synthesis and characterization of C2C12-laden gelatin methacryloyl (GelMA) from marine and mammalian sources.
Int J Biol Macromol. 2021 Jul 31;183:918-926. doi: 10.1016/j.ijbiomac.2021.05.040. Epub 2021 May 7.
8
Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives.
Biomaterials. 2017 Sep;139:163-171. doi: 10.1016/j.biomaterials.2017.04.050. Epub 2017 May 29.
9
Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application.
PLoS One. 2016 Oct 10;11(10):e0163902. doi: 10.1371/journal.pone.0163902. eCollection 2016.
10
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.
Biomaterials. 2015 Dec;73:254-71. doi: 10.1016/j.biomaterials.2015.08.045. Epub 2015 Aug 28.

引用本文的文献

2
The Use of Gelatin Methacrylate (GelMA) in Cartilage Tissue Engineering: A Comprehensive Review.
Bioengineering (Basel). 2025 Jun 27;12(7):700. doi: 10.3390/bioengineering12070700.
3
Spontaneous Crimping of Gelatin Methacryloyl Nanofibrils Induced by Limited Hydration.
ACS Biomater Sci Eng. 2025 Aug 11;11(8):4758-4772. doi: 10.1021/acsbiomaterials.5c00828. Epub 2025 Jul 18.
5
Thermally Cured Gelatin-Methacryloyl Hydrogels Form Mechanically Modulating Platforms for Cell Studies.
Biomacromolecules. 2025 Aug 11;26(8):5086-5095. doi: 10.1021/acs.biomac.5c00518. Epub 2025 Jul 17.
6
3D Printed Nerve Guidance Conduit for Biologics-Free Nerve Regeneration and Vascular Integration.
bioRxiv. 2025 May 7:2025.04.30.651603. doi: 10.1101/2025.04.30.651603.
7
Thermoresponsive BrushGel Microcarriers for Efficient Cell Expansion and Enzyme-Reduced Harvesting.
Adv Healthc Mater. 2025 Sep;14(23):e2404538. doi: 10.1002/adhm.202404538. Epub 2025 Jul 14.
8
3D bioprinting of a perfusable skin-on-chip model suitable for drug testing and wound healing studies.
Mater Today Bio. 2025 Jun 13;33:101974. doi: 10.1016/j.mtbio.2025.101974. eCollection 2025 Aug.
10
Tunable methacrylated decellularized heart matrix: a versatile scaffold for cardiac tissue engineering.
Front Bioeng Biotechnol. 2025 Jun 12;13:1579246. doi: 10.3389/fbioe.2025.1579246. eCollection 2025.

本文引用的文献

1
Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting.
J Mater Chem B. 2013 Nov 7;1(41):5675-5685. doi: 10.1039/c3tb20745e. Epub 2013 Sep 18.
3
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.
Biomaterials. 2015 Dec;73:254-71. doi: 10.1016/j.biomaterials.2015.08.045. Epub 2015 Aug 28.
4
A multilayered microfluidic blood vessel-like structure.
Biomed Microdevices. 2015 Oct;17(5):88. doi: 10.1007/s10544-015-9993-2.
6
Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds.
J Biomater Appl. 2015 Feb;29(7):977-87. doi: 10.1177/0885328214551009. Epub 2014 Sep 23.
7
Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system.
Macromol Rapid Commun. 2014 Sep;35(18):1578-86. doi: 10.1002/marc.201400278. Epub 2014 Aug 11.
8
Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers.
Biofabrication. 2014 Sep;6(3):035020. doi: 10.1088/1758-5082/6/3/035020. Epub 2014 Jul 22.
9
Cell-laden photocrosslinked GelMA-DexMA copolymer hydrogels with tunable mechanical properties for tissue engineering.
J Mater Sci Mater Med. 2014 Sep;25(9):2173-83. doi: 10.1007/s10856-014-5261-x. Epub 2014 Jul 10.
10
Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair.
ACS Nano. 2014 Aug 26;8(8):8050-62. doi: 10.1021/nn5020787. Epub 2014 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验