Suppr超能文献

鱿鱼巨大轴突膜鞘的力学特性及其胶原性神经内膜对其性能的影响。

Mechanical characterization of squid giant axon membrane sheath and influence of the collagenous endoneurium on its properties.

机构信息

Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden.

Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.

出版信息

Sci Rep. 2019 Jun 20;9(1):8969. doi: 10.1038/s41598-019-45446-y.

Abstract

To understand traumas to the nervous system, the relation between mechanical load and functional impairment needs to be explained. Cellular-level computational models are being used to capture the mechanism behind mechanically-induced injuries and possibly predict these events. However, uncertainties in the material properties used in computational models undermine the validity of their predictions. For this reason, in this study the squid giant axon was used as a model to provide a description of the axonal mechanical behavior in a large strain and high strain rate regime [Formula: see text], which is relevant for injury investigations. More importantly, squid giant axon membrane sheaths were isolated and tested under dynamic uniaxial tension and relaxation. From the lumen outward, the membrane sheath presents: an axolemma, a layer of Schwann cells followed by the basement membrane and a prominent layer of loose connective tissue consisting of fibroblasts and collagen. Our results highlight the load-bearing role of this enwrapping structure and provide a constitutive description that could in turn be used in computational models. Furthermore, tests performed on collagen-depleted membrane sheaths reveal both the substantial contribution of the endoneurium to the total sheath's response and an interesting increase in material nonlinearity when the collagen in this connective layer is digested. All in all, our results provide useful insights for modelling the axonal mechanical response and in turn will lead to a better understanding of the relationship between mechanical insult and electrophysiological outcome.

摘要

为了理解神经系统的创伤,需要解释机械负荷与功能障碍之间的关系。细胞级别的计算模型正被用于捕捉机械损伤背后的机制,并可能预测这些事件。然而,计算模型中使用的材料特性的不确定性破坏了它们预测的有效性。出于这个原因,在这项研究中,鱿鱼巨大轴突被用作模型,以提供大应变和高应变率范围内轴突机械行为的描述[公式:见文本],这与损伤研究相关。更重要的是,鱿鱼巨大轴突的膜鞘被分离出来,并在动态单轴拉伸和松弛下进行测试。从管腔向外,膜鞘呈现:轴突膜、一层施万细胞,接着是基底膜和一层由成纤维细胞和胶原组成的明显疏松结缔组织。我们的结果强调了这个包裹结构的承载作用,并提供了一个本构描述,反过来可以用于计算模型。此外,在胶原耗尽的膜鞘上进行的测试揭示了,神经内膜对鞘总响应的实质性贡献,以及当该连接层中的胶原被消化时材料非线性的有趣增加。总之,我们的结果为模拟轴突的机械响应提供了有用的见解,并进一步加深了对机械损伤与电生理结果之间关系的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9e1/6586665/d0c7eb78ae39/41598_2019_45446_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验