Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China.
Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
Nat Rev Endocrinol. 2019 Aug;15(8):489-498. doi: 10.1038/s41574-019-0226-2. Epub 2019 Jun 24.
Mammalian sperm RNA is increasingly recognized as an additional source of paternal hereditary information beyond DNA. Environmental inputs, including an unhealthy diet, mental stresses and toxin exposure, can reshape the sperm RNA signature and induce offspring phenotypes that relate to paternal environmental stressors. Our understanding of the categories of sperm RNAs (such as tRNA-derived small RNAs, microRNAs, ribosomal RNA-derived small RNAs and long non-coding RNAs) and associated RNA modifications is expanding and has begun to reveal the functional diversity and information capacity of these molecules. However, the coding mechanism endowed by sperm RNA structures and by RNA interactions with DNA and other epigenetic factors remains unknown. How sperm RNA-encoded information is decoded in early embryos to control offspring phenotypes also remains unclear. Complete deciphering of the 'sperm RNA code' with regard to metabolic control could move the field towards translational applications and precision medicine, and this may lead to prevention of intergenerational transmission of obesity and type 2 diabetes mellitus susceptibility.
哺乳动物精子 RNA 被越来越多地认为是除 DNA 之外的父系遗传信息的另一个来源。环境因素,包括不健康的饮食、精神压力和毒素暴露,会重塑精子 RNA 特征,并诱发与父系环境压力相关的后代表型。我们对精子 RNA(如 tRNA 衍生的小 RNA、microRNA、核糖体 RNA 衍生的小 RNA 和长非编码 RNA)的类别及其相关 RNA 修饰的理解正在不断扩展,并开始揭示这些分子的功能多样性和信息容量。然而,精子 RNA 结构赋予的编码机制以及 RNA 与 DNA 和其他表观遗传因子的相互作用所赋予的编码机制仍然未知。精子 RNA 编码信息如何在早期胚胎中解码以控制后代表型也不清楚。关于代谢控制的“精子 RNA 密码”的完整破译可能会推动该领域向转化应用和精准医学发展,这可能会防止肥胖和 2 型糖尿病易感性的代际传递。