具有荧光开关的核壳型金属有机骨架用于引发增强型光动力疗法。
Core-shell metal-organic frameworks with fluorescence switch to trigger an enhanced photodynamic therapy.
机构信息
Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States.
Faculty of Health Sciences, University of Macau, Macau, SAR 999078, P. R. China.
出版信息
Theranostics. 2019 Apr 13;9(10):2791-2799. doi: 10.7150/thno.34740. eCollection 2019.
The design of hybrid metal-organic framework (MOF) nanomaterials by integrating inorganic nanoparticle into MOF (NP@MOF) has demonstrated outstanding potential for obtaining enhanced, collective, and extended novel physiochemical properties. However, the reverse structure of MOF-integrated inorganic nanoparticle (MOF@NP) with multifunction has rarely been reported. : We developed a facile in-situ growth method to integrate MOF nanoparticle into inorganic nanomaterial and designed a fluorescence switch to trigger enhanced photodynamic therapy. The influence of "switch" on the photodynamic activity was studied . The mice with tumor model was applied to evaluate the "switch"-triggered enhanced photodynamic therapy efficacy. : A core-satellites structure with fluorescence off and on function was obtained when growing MnO on the surface of fluorescent zeolitic imidazolate framework (ZIF-8) nanoparticles. Furthermore, A core-shell structure with photodynamic activity off and on function was achieved by growing MnO on the surface of porphyrinic ZrMOF nanoparticles (ZrMOF@MnO). Both the fluorescence and photodynamic activities can be turned off by MnO and turned on by GSH. The GSH-responsive activation of photodynamic activity of ZrMOF@MnO significantly depleted the intracellular GSH via a MnO reduction reaction, thus triggering an enhanced photodynamic therapy efficacy. Finally, the GSH-reduced Mn provided a platform for magnetic resonance imaging-guided tumor therapy. : This work highlights the impact of inorganic nanomaterial on the MOF properties and provides insight to the rational design of multifunctional MOF-inorganic nanomaterial complexes.
杂化金属-有机骨架(MOF)纳米材料的设计是通过将无机纳米颗粒整合到 MOF 中(NP@MOF),这种方法具有获得增强的、集体的和扩展的新型物理化学性质的潜力。然而,具有多功能的 MOF 整合无机纳米颗粒(MOF@NP)的反向结构很少有报道。我们开发了一种简便的原位生长方法,将 MOF 纳米颗粒整合到无机纳米材料中,并设计了一种荧光开关来触发增强的光动力疗法。研究了“开关”对光动力活性的影响。应用载瘤模型小鼠评估了“开关”触发的增强光动力治疗效果。在荧光沸石咪唑骨架(ZIF-8)纳米颗粒表面生长 MnO 时,得到了具有荧光关闭和开启功能的核-卫星结构。此外,通过在卟啉锆 MOF 纳米颗粒(ZrMOF@MnO)表面生长 MnO,得到了具有光动力活性关闭和开启功能的核-壳结构。MnO 可以使荧光和光动力活性都关闭,而 GSH 可以使它们都开启。ZrMOF@MnO 的光动力活性的 GSH 响应激活通过 MnO 的还原反应显著耗尽了细胞内的 GSH,从而触发了增强的光动力治疗效果。最后,还原的 Mn 提供了一个用于磁共振成像引导肿瘤治疗的平台。这项工作强调了无机纳米材料对 MOF 性质的影响,并为多功能 MOF-无机纳米复合材料的合理设计提供了思路。