Suppr超能文献

在单细胞水平上绘制染色质修饰图。

Mapping chromatin modifications at the single cell level.

机构信息

Department of Bioengineering, Stanford University, Shriram Center, 443 Via Ortega, Rm 042, Stanford, CA 94305, USA.

Department of Bioengineering, Stanford University, Shriram Center, 443 Via Ortega, Rm 042, Stanford, CA 94305, USA

出版信息

Development. 2019 Jun 27;146(12):dev170217. doi: 10.1242/dev.170217.

Abstract

Understanding chromatin regulation holds enormous promise for controlling gene regulation, predicting cellular identity, and developing diagnostics and cellular therapies. However, the dynamic nature of chromatin, together with cell-to-cell heterogeneity in its structure, limits our ability to extract its governing principles. Single cell mapping of chromatin modifications, in conjunction with expression measurements, could help overcome these limitations. Here, we review recent advances in single cell-based measurements of chromatin modifications, including optimization to reduce DNA loss, improved DNA sequencing, barcoding, and antibody engineering. We also highlight several applications of these techniques that have provided insights into cell-type classification, mapping modification co-occurrence and heterogeneity, and monitoring chromatin dynamics.

摘要

理解染色质调控对于控制基因调控、预测细胞身份以及开发诊断和细胞疗法具有巨大的潜力。然而,染色质的动态性质以及其结构在细胞间的异质性限制了我们提取其控制原则的能力。染色质修饰的单细胞图谱结合表达测量可以帮助克服这些限制。在这里,我们综述了基于单细胞的染色质修饰测量的最新进展,包括减少 DNA 损失的优化、改进的 DNA 测序、条形码和抗体工程。我们还强调了这些技术的几个应用,这些应用提供了对细胞类型分类、修饰共现和异质性以及监测染色质动力学的深入了解。

相似文献

1
Mapping chromatin modifications at the single cell level.
Development. 2019 Jun 27;146(12):dev170217. doi: 10.1242/dev.170217.
3
Role of DNA methylation in stable gene repression.
J Biol Chem. 2007 Apr 20;282(16):12194-200. doi: 10.1074/jbc.M607838200. Epub 2007 Feb 20.
4
Epigenomics in stress tolerance of plants under the climate change.
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.
8
CpG island mapping by epigenome prediction.
PLoS Comput Biol. 2007 Jun;3(6):e110. doi: 10.1371/journal.pcbi.0030110. Epub 2007 May 2.
9
CpG Islands Shape the Epigenome Landscape.
J Mol Biol. 2021 Mar 19;433(6):166659. doi: 10.1016/j.jmb.2020.09.018. Epub 2020 Oct 1.
10
Effects of histone acetylation and CpG methylation on the structure of nucleosomes.
Biochim Biophys Acta. 2012 Aug;1824(8):974-82. doi: 10.1016/j.bbapap.2012.05.006. Epub 2012 May 22.

引用本文的文献

1
Single-cell Epigenomic Profiling with High-throughput Droplet scChIP-seq.
Methods Mol Biol. 2025;2919:213-239. doi: 10.1007/978-1-0716-4486-7_12.
3
Progress in multifactorial single-cell chromatin profiling methods.
Biochem Soc Trans. 2024 Aug 28;52(4):1827-1839. doi: 10.1042/BST20231471.
4
Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.
Methods Mol Biol. 2024;2842:23-55. doi: 10.1007/978-1-0716-4051-7_2.
5
Deep Batch Integration and Denoise of Single-Cell RNA-Seq Data.
Adv Sci (Weinh). 2024 Aug;11(29):e2308934. doi: 10.1002/advs.202308934. Epub 2024 May 22.
6
Chromatinopathies: insight in clinical aspects and underlying epigenetic changes.
J Appl Genet. 2024 May;65(2):287-301. doi: 10.1007/s13353-023-00824-1. Epub 2024 Jan 5.
7
How single-cell techniques help us look into lung cancer heterogeneity and immunotherapy.
Front Immunol. 2023 Aug 21;14:1238454. doi: 10.3389/fimmu.2023.1238454. eCollection 2023.
8
Single-Cell Analysis in Immuno-Oncology.
Int J Mol Sci. 2023 May 8;24(9):8422. doi: 10.3390/ijms24098422.
9
The omics era: a nexus of untapped potential for Mendelian chromatinopathies.
Hum Genet. 2024 Apr;143(4):475-495. doi: 10.1007/s00439-023-02560-2. Epub 2023 Apr 28.
10
Mammalian DNA methylome dynamics: mechanisms, functions and new frontiers.
Development. 2022 Dec 15;149(24). doi: 10.1242/dev.182683.

本文引用的文献

1
CUT&Tag for efficient epigenomic profiling of small samples and single cells.
Nat Commun. 2019 Apr 29;10(1):1930. doi: 10.1038/s41467-019-09982-5.
2
Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification.
Nat Methods. 2019 Apr;16(4):323-325. doi: 10.1038/s41592-019-0361-7. Epub 2019 Mar 28.
3
The cis-Regulatory Atlas of the Mouse Immune System.
Cell. 2019 Feb 7;176(4):897-912.e20. doi: 10.1016/j.cell.2018.12.036. Epub 2019 Jan 24.
4
Chromatin accessibility and the regulatory epigenome.
Nat Rev Genet. 2019 Apr;20(4):207-220. doi: 10.1038/s41576-018-0089-8.
5
Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution.
Nat Genet. 2019 Jan;51(1):19-25. doi: 10.1038/s41588-018-0290-x. Epub 2018 Dec 17.
6
A chromatin integration labelling method enables epigenomic profiling with lower input.
Nat Cell Biol. 2019 Feb;21(2):287-296. doi: 10.1038/s41556-018-0248-3. Epub 2018 Dec 10.
7
BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files.
Bioinformatics. 2019 Jul 1;35(13):2193-2198. doi: 10.1093/bioinformatics/bty841.
9
High-Resolution Single-Cell DNA Methylation Measurements Reveal Epigenetically Distinct Hematopoietic Stem Cell Subpopulations.
Stem Cell Reports. 2018 Aug 14;11(2):578-592. doi: 10.1016/j.stemcr.2018.07.003. Epub 2018 Aug 2.
10
Cell-type-specific brain methylomes profiled via ultralow-input microfluidics.
Nat Biomed Eng. 2018 Mar;2(3):183-194. Epub 2018 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验