MIVEGEC, CNRS, IRD, Université de Montpellier, France.
MIVEGEC, CNRS, IRD, Université de Montpellier, France.
Epidemics. 2019 Dec;29:100349. doi: 10.1016/j.epidem.2019.100349. Epub 2019 Jun 18.
Parasite genetic diversity can provide information on disease transmission dynamics but most mathematical and statistical frameworks ignore the exact combinations of genotypes in infections. We introduce and validate a new method that combines explicit epidemiological modelling of coinfections and regression-Approximate Bayesian Computing (ABC) to detect within-host interactions. Using a susceptible-infected-susceptible (SIS) model, we show that, if sufficiently strong, within-host parasite interactions can be detected from epidemiological data. We also show that, in this simple setting, this detection is robust even in the face of some level of host heterogeneity in behaviour. These simulations results offer promising applications to analyse large datasets of multiple infection prevalence data, such as those collected for genital infections by Human Papillomaviruses (HPVs).
寄生虫遗传多样性可以提供疾病传播动态的信息,但大多数数学和统计框架忽略了感染中基因型的确切组合。我们引入并验证了一种新方法,该方法结合了共感染的明确流行病学建模和回归-近似贝叶斯计算(ABC),以检测体内寄生虫相互作用。使用易感染-感染-易感染(SIS)模型,我们表明,如果相互作用足够强,则可以从流行病学数据中检测到体内寄生虫相互作用。我们还表明,在这种简单的情况下,即使宿主行为存在一定程度的异质性,这种检测也是稳健的。这些模拟结果为分析大量多重感染流行数据提供了有希望的应用,例如为人类乳头瘤病毒(HPV)引起的生殖器感染收集的数据。