Frank Michael, Drikakis Dimitris
University of Strathclyde, Glasgow, G1 1XJ UK.
Microfluid Nanofluidics. 2017;21(9):148. doi: 10.1007/s10404-017-1980-x. Epub 2017 Aug 24.
The aim of this research is to identify possible mechanisms that govern heat transport at a solid-liquid interface using molecular dynamics. The study reveals that, unlike its bulk analogue, a liquid in a nanochannel sustains long-lived collective vibrations, phonons, which propagate over longer timescales and distances. The larger phonon mean free path in nanochannels is attributed to the greater structural order of the liquid atoms and to the larger liquid relaxation time-the time in which the liquid structure remains unchanged and solid-like. For channels of height less than , long-range phonons are the dominant means of heat transfer in the directions parallel to the channel walls. The present findings are in agreement with experiments, which have observed significantly increased liquid relaxation times for the same range of channel heights. Finally, it is argued that confinement introduces additional transverse modes of vibration that also contribute to the thermal conductivity enhancement.
本研究的目的是利用分子动力学确定在固液界面控制热传输的可能机制。该研究表明,与大块类似物不同,纳米通道中的液体维持着长寿命的集体振动,即声子,其在更长的时间尺度和距离上传播。纳米通道中较大的声子平均自由程归因于液体原子更大的结构有序性以及更大的液体弛豫时间——即液体结构保持不变且类似固体的时间。对于高度小于 的通道,长程声子是平行于通道壁方向上热传递的主要方式。目前的研究结果与实验结果一致,实验观察到在相同通道高度范围内液体弛豫时间显著增加。最后,有人认为限制引入了额外的横向振动模式,这也有助于提高热导率。