Cancer Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.
Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom.
Elife. 2019 Jul 2;8:e45068. doi: 10.7554/eLife.45068.
Several enzymes can simultaneously interact with multiple intracellular metabolites, however, how the allosteric effects of distinct ligands are integrated to coordinately control enzymatic activity remains poorly understood. We addressed this question using, as a model system, the glycolytic enzyme pyruvate kinase M2 (PKM2). We show that the PKM2 activator fructose 1,6-bisphosphate (FBP) alone promotes tetramerisation and increases PKM2 activity, but addition of the inhibitor L-phenylalanine (Phe) prevents maximal activation of FBP-bound PKM2 tetramers. We developed a method, AlloHubMat, that uses eigenvalue decomposition of mutual information derived from molecular dynamics trajectories to identify residues that mediate FBP-induced allostery. Experimental mutagenesis of these residues identified PKM2 variants in which activation by FBP remains intact but cannot be attenuated by Phe. Our findings reveal residues involved in FBP-induced allostery that enable the integration of allosteric input from Phe and provide a paradigm for the coordinate regulation of enzymatic activity by simultaneous allosteric inputs.
几种酶可以同时与多种细胞内代谢物相互作用,然而,不同配体的变构效应如何被整合以协调控制酶活性仍知之甚少。我们使用糖酵解酶丙酮酸激酶 M2 (PKM2)作为模型系统来解决这个问题。我们表明,PKM2 的激活剂 1,6-二磷酸果糖 (FBP) 单独促进四聚体形成并增加 PKM2 活性,但抑制剂 L-苯丙氨酸 (Phe) 的添加可防止 FBP 结合的 PKM2 四聚体的最大激活。我们开发了一种方法 AlloHubMat,它使用从分子动力学轨迹中得出的互信息的特征值分解来识别介导 FBP 诱导变构的残基。对这些残基进行实验诱变,确定了 PKM2 变体,其中 FBP 的激活保持完整,但不能被 Phe 减弱。我们的发现揭示了参与 FBP 诱导变构的残基,这些残基使来自 Phe 的变构输入能够被整合,并为同时的变构输入对酶活性的协调调节提供了范例。