文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

iMAP:用于微生物组数据分析的集成生物信息学和可视化管道。

iMAP: an integrated bioinformatics and visualization pipeline for microbiome data analysis.

机构信息

The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA, USA.

Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA, USA.

出版信息

BMC Bioinformatics. 2019 Jul 3;20(1):374. doi: 10.1186/s12859-019-2965-4.


DOI:10.1186/s12859-019-2965-4
PMID:31269897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6610863/
Abstract

BACKGROUND: One of the major challenges facing investigators in the microbiome field is turning large numbers of reads generated by next-generation sequencing (NGS) platforms into biological knowledge. Effective analytical workflows that guarantee reproducibility, repeatability, and result provenance are essential requirements of modern microbiome research. For nearly a decade, several state-of-the-art bioinformatics tools have been developed for understanding microbial communities living in a given sample. However, most of these tools are built with many functions that require an in-depth understanding of their implementation and the choice of additional tools for visualizing the final output. Furthermore, microbiome analysis can be time-consuming and may even require more advanced programming skills which some investigators may be lacking. RESULTS: We have developed a wrapper named iMAP (Integrated Microbiome Analysis Pipeline) to provide the microbiome research community with a user-friendly and portable tool that integrates bioinformatics analysis and data visualization. The iMAP tool wraps functionalities for metadata profiling, quality control of reads, sequence processing and classification, and diversity analysis of operational taxonomic units. This pipeline is also capable of generating web-based progress reports for enhancing an approach referred to as review-as-you-go (RAYG). For the most part, the profiling of microbial community is done using functionalities implemented in Mothur or QIIME2 platform. Also, it uses different R packages for graphics and R-markdown for generating progress reports. We have used a case study to demonstrate the application of the iMAP pipeline. CONCLUSIONS: The iMAP pipeline integrates several functionalities for better identification of microbial communities present in a given sample. The pipeline performs in-depth quality control that guarantees high-quality results and accurate conclusions. The vibrant visuals produced by the pipeline facilitate a better understanding of the complex and multidimensional microbiome data. The integrated RAYG approach enables the generation of web-based reports, which provides the investigators with the intermediate output that can be reviewed progressively. The intensively analyzed case study set a model for microbiome data analysis.

摘要

背景:下一代测序(NGS)平台产生的大量reads 给微生物组领域的研究人员带来了巨大的挑战,他们需要将这些数据转化为有意义的生物学知识。可重复、可重现且可追溯的有效分析工作流程是现代微生物组研究的基本要求。近十年来,已经开发了许多用于理解特定样本中微生物群落的先进生物信息学工具。然而,这些工具中的大多数都具有许多功能,这需要深入了解其实现以及选择其他工具来可视化最终输出。此外,微生物组分析可能很耗时,甚至可能需要一些研究人员所缺乏的更高级的编程技能。

结果:我们开发了一个名为 iMAP(Integrated Microbiome Analysis Pipeline)的包装器,为微生物组研究社区提供了一个用户友好且可移植的工具,它集成了生物信息学分析和数据可视化功能。iMAP 工具包装了元数据分析、reads 质量控制、序列处理和分类以及操作分类单元多样性分析的功能。该管道还能够生成基于网络的进度报告,以增强所谓的“边做边审(review-as-you-go,RAYG)”方法。在大多数情况下,微生物群落的分析是使用 Mothur 或 QIIME2 平台实现的功能完成的。此外,它还使用不同的 R 包进行图形处理和 R 标记以生成进度报告。我们使用一个案例研究来说明 iMAP 管道的应用。

结论:iMAP 管道集成了多个功能,可更好地识别给定样本中存在的微生物群落。该管道执行深度质量控制,可确保高质量的结果和准确的结论。该管道生成的生动可视化效果有助于更好地理解复杂的多维微生物组数据。集成的 RAYG 方法可生成基于网络的报告,为研究人员提供可逐步审查的中间输出。经过深入分析的案例研究为微生物组数据分析树立了一个模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/8c59c0f865c1/12859_2019_2965_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/c0b43a65e17b/12859_2019_2965_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/7eb69abbdfe9/12859_2019_2965_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/16510205efb8/12859_2019_2965_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/627c42b076bd/12859_2019_2965_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/633ab2a6d6ab/12859_2019_2965_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/fc5f2fc977aa/12859_2019_2965_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/f7b6f385e0ce/12859_2019_2965_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/e52a8f226f6b/12859_2019_2965_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/e63950c49696/12859_2019_2965_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/782aa7cff3c1/12859_2019_2965_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/8c59c0f865c1/12859_2019_2965_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/c0b43a65e17b/12859_2019_2965_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/7eb69abbdfe9/12859_2019_2965_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/16510205efb8/12859_2019_2965_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/627c42b076bd/12859_2019_2965_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/633ab2a6d6ab/12859_2019_2965_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/fc5f2fc977aa/12859_2019_2965_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/f7b6f385e0ce/12859_2019_2965_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/e52a8f226f6b/12859_2019_2965_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/e63950c49696/12859_2019_2965_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/782aa7cff3c1/12859_2019_2965_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/6610863/8c59c0f865c1/12859_2019_2965_Fig11_HTML.jpg

相似文献

[1]
iMAP: an integrated bioinformatics and visualization pipeline for microbiome data analysis.

BMC Bioinformatics. 2019-7-3

[2]
A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.

BMC Microbiol. 2017-9-13

[3]
Taxonomic annotation of 16S rRNA sequences of pig intestinal samples using MG-RAST and QIIME2 generated different microbiota compositions.

J Microbiol Methods. 2021-7

[4]
Dadasnake, a Snakemake implementation of DADA2 to process amplicon sequencing data for microbial ecology.

Gigascience. 2020-11-30

[5]
Different next generation sequencing platforms produce different microbial profiles and diversity in cystic fibrosis sputum.

J Microbiol Methods. 2016-11

[6]
Instruction of microbiome taxonomic profiling based on 16S rRNA sequencing.

J Microbiol. 2020-2-27

[7]
BiomMiner: An advanced exploratory microbiome analysis and visualization pipeline.

PLoS One. 2020-6-18

[8]
EzMAP: Easy Microbiome Analysis Platform.

BMC Bioinformatics. 2021-4-7

[9]
Evaluating the accuracy of amplicon-based microbiome computational pipelines on simulated human gut microbial communities.

BMC Bioinformatics. 2017-5-30

[10]
A comprehensive evaluation of the sl1p pipeline for 16S rRNA gene sequencing analysis.

Microbiome. 2017-8-14

引用本文的文献

[1]
Genomic Alterations and Microbiota Crosstalk in Hepatic Cancers: The Gut-Liver Axis in Tumorigenesis and Therapy.

Genes (Basel). 2025-7-30

[2]
Characterization of psychrotrophic and thermoduric bacteria in raw milk using a multi-omics approach.

Microb Genom. 2024-11

[3]
The geomicrobiology of limestone, sulfuric acid speleogenetic, and volcanic caves: basic concepts and future perspectives.

Front Microbiol. 2024-3-20

[4]
Snowflake: visualizing microbiome abundance tables as multivariate bipartite graphs.

Front Bioinform. 2024-2-5

[5]
PSReliP: an integrated pipeline for analysis and visualization of population structure and relatedness based on genome-wide genetic variant data.

BMC Bioinformatics. 2023-4-5

[6]
Contamination detection and microbiome exploration with GRIMER.

Gigascience. 2022-12-28

[7]
Exploring the Microbiome Analysis and Visualization Landscape.

Front Bioinform. 2021-12-2

[8]
Namco: a microbiome explorer.

Microb Genom. 2022-8

[9]
An Insight into Vaginal Microbiome Techniques.

Life (Basel). 2021-11-13

[10]
EzMAP: Easy Microbiome Analysis Platform.

BMC Bioinformatics. 2021-4-7

本文引用的文献

[1]
q2-sample-classifier: machine-learning tools for microbiome classification and regression.

J Open Res Softw. 2018

[2]
Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin.

Microbiome. 2018-5-17

[3]
Updating the 97% identity threshold for 16S ribosomal RNA OTUs.

Bioinformatics. 2018-7-15

[4]
OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units.

mSphere. 2017-3-8

[5]
Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies.

Int J Syst Evol Microbiol. 2017-5-30

[6]
VSEARCH: a versatile open source tool for metagenomics.

PeerJ. 2016-10-18

[7]
SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation.

PLoS One. 2016-10-5

[8]
Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses.

F1000Res. 2016-6-24

[9]
MultiQC: summarize analysis results for multiple tools and samples in a single report.

Bioinformatics. 2016-10-1

[10]
DADA2: High-resolution sample inference from Illumina amplicon data.

Nat Methods. 2016-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索