Suppr超能文献

利用T2加权和对比增强T1加权MRI的瘤内和瘤周影像组学对乳腺癌新辅助化疗反应进行治疗前预测

Pre-Treatment Prediction of Breast Cancer Response to Neoadjuvant Chemotherapy Using Intratumoral and Peritumoral Radiomics from T2-Weighted and Contrast-Enhanced T1-Weighted MRI.

作者信息

Jang Deok Hyun, Kolios Christopher, Osapoetra Laurentius O, Sannachi Lakshmanan, Curpen Belinda, Pejović-Milić Ana, Czarnota Gregory J

机构信息

Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.

Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.

出版信息

Cancers (Basel). 2025 Apr 30;17(9):1520. doi: 10.3390/cancers17091520.

Abstract

(1) Background: Neoadjuvant chemotherapy (NAC) is an integral part of breast cancer management, and response to NAC is an important prognostic factor associated with improved survival outcomes. However, the current standard for response assessment relies on post-surgical histopathological analysis, which limits early therapeutic decision-making and treatment personalization. This study aimed to develop and evaluate a machine learning model that integrates pre-treatment MRI radiomics and clinical features to predict response to NAC in breast cancer patients. (2) Methods: In this study, a machine learning model was developed to predict breast cancer response to NAC using pre-treatment magnetic resonance imaging (MRI) radiomics and clinical data. Radiomic features were extracted from contrast-enhanced T1-weighted (CE-T1) and T2-weighted (T2) MRI sequences using both intratumoral and peritumoral segmentations. Furthermore, this study uniquely examined two response assessment criteria: (1) pathologic complete response (pCR) versus non-pCR, and (2) clinical response versus non-response. A total of 254 patients with biopsy-confirmed breast cancer who completed NAC were included. Radiomic features ( = 400) and clinical features ( = 7) were analyzed to build a predictive model employing the XGBoost classifier. Performance was measured in terms of accuracy, precision, sensitivity, specificity, F1-score, and AUC. (3) Results: The integration of radiomic features with clinical data significantly enhanced the predictive performance. For pCR and non-pCR prediction, the combined features model achieved an accuracy of 80% and AUC of 0.85, outperforming both the clinical features model (Accuracy = 68%, AUC = 0.81) and radiomic features model (Accuracy = 66%, AUC = 0.60). Similarly, for the clinical response and non-response prediction, the combined features model achieved an Accuracy of 74% and AUC of 0.75, outperforming both the clinical features model (Accuracy = 63%, AUC = 0.68) and radiomic features model (Accuracy = 66%, AUC = 0.57). (4) Conclusions: These findings highlight the synergistic effect of integrating clinical data and MRI-based radiomics to improve pre-treatment NAC response prediction, which has the potential to enable more precise and personalized treatment strategies.

摘要

(1)背景:新辅助化疗(NAC)是乳腺癌治疗的重要组成部分,对NAC的反应是与改善生存结果相关的重要预后因素。然而,目前反应评估的标准依赖于术后组织病理学分析,这限制了早期治疗决策和治疗个性化。本研究旨在开发并评估一种机器学习模型,该模型整合治疗前MRI影像组学和临床特征,以预测乳腺癌患者对NAC的反应。(2)方法:在本研究中,开发了一种机器学习模型,使用治疗前磁共振成像(MRI)影像组学和临床数据来预测乳腺癌对NAC的反应。使用瘤内和瘤周分割从对比增强T1加权(CE-T1)和T2加权(T2)MRI序列中提取影像组学特征。此外,本研究特别考察了两种反应评估标准:(1)病理完全缓解(pCR)与非pCR,以及(2)临床反应与无反应。总共纳入了254例经活检确诊且完成NAC的乳腺癌患者。分析影像组学特征(n = 400)和临床特征(n = 7),使用XGBoost分类器构建预测模型。性能通过准确性、精确性、敏感性、特异性、F1分数和AUC进行衡量。(3)结果:影像组学特征与临床数据的整合显著提高了预测性能。对于pCR和非pCR预测,联合特征模型的准确率达到80%,AUC为0.85,优于临床特征模型(准确率 = 68%,AUC = 0.81)和影像组学特征模型(准确率 = 66%,AUC = 0.60)。同样,对于临床反应和无反应预测,联合特征模型的准确率为74%,AUC为0.75,优于临床特征模型(准确率 = 63%,AUC = 0.68)和影像组学特征模型(准确率 = 66%,AUC = 0.57)。(4)结论:这些发现突出了整合临床数据和基于MRI的影像组学对改善治疗前NAC反应预测的协同作用,这有可能实现更精确和个性化的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f92/12070997/db9a7f094866/cancers-17-01520-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验