Suppr超能文献

鉴定 mAm 甲基转移酶 PCIF1 揭示了 mAm 在转录组中的位置和功能。

Identification of the mAm Methyltransferase PCIF1 Reveals the Location and Functions of mAm in the Transcriptome.

机构信息

Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.

Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland.

出版信息

Mol Cell. 2019 Aug 8;75(3):631-643.e8. doi: 10.1016/j.molcel.2019.06.006. Epub 2019 Jul 3.

Abstract

mRNAs are regulated by nucleotide modifications that influence their cellular fate. Two of the most abundant modified nucleotides are N-methyladenosine (mA), found within mRNAs, and N,2'-O-dimethyladenosine (mAm), which is found at the first transcribed nucleotide. Distinguishing these modifications in mapping studies has been difficult. Here, we identify and biochemically characterize PCIF1, the methyltransferase that generates mAm. We find that PCIF1 binds and is dependent on the mG cap. By depleting PCIF1, we generated transcriptome-wide maps that distinguish mAm and mA. We find that mA and mAm misannotations arise from mRNA isoforms with alternative transcription start sites (TSSs). These isoforms contain mAm that maps to "internal" sites, increasing the likelihood of misannotation. We find that depleting PCIF1 does not substantially affect mRNA translation but is associated with reduced stability of a subset of mAm-annotated mRNAs. The discovery of PCIF1 and our accurate mapping technique will facilitate future studies to characterize mAm's function.

摘要

mRNA 受到核苷酸修饰的调控,这些修饰影响它们的细胞命运。两种最丰富的修饰核苷酸是 N6-甲基腺苷(m6A),存在于 mRNA 中,以及 N2',O2-二甲基腺苷(mAm),它位于第一个转录的核苷酸上。在图谱研究中区分这些修饰一直很困难。在这里,我们鉴定并生化表征了 PCIF1,它是生成 mAm 的甲基转移酶。我们发现 PCIF1 结合并依赖于 mG 帽。通过耗尽 PCIF1,我们生成了全转录组图谱,区分了 mAm 和 mA。我们发现 mA 和 mAm 的错误注释来自具有替代转录起始位点(TSS)的 mRNA 亚型。这些亚型含有映射到“内部”位点的 mAm,增加了错误注释的可能性。我们发现耗尽 PCIF1 不会显著影响 mRNA 翻译,但与一组 mAm 注释的 mRNA 的稳定性降低有关。PCIF1 的发现和我们准确的图谱技术将有助于未来研究 mAm 的功能。

相似文献

1
Identification of the mAm Methyltransferase PCIF1 Reveals the Location and Functions of mAm in the Transcriptome.
Mol Cell. 2019 Aug 8;75(3):631-643.e8. doi: 10.1016/j.molcel.2019.06.006. Epub 2019 Jul 3.
2
PCIF1 Catalyzes m6Am mRNA Methylation to Regulate Gene Expression.
Mol Cell. 2019 Aug 8;75(3):620-630.e9. doi: 10.1016/j.molcel.2019.05.030. Epub 2019 Jul 3.
3
HIV reprograms host mAm RNA methylome by viral Vpr protein-mediated degradation of PCIF1.
Nat Commun. 2021 Sep 20;12(1):5543. doi: 10.1038/s41467-021-25683-4.
4
The Mammalian Cap-Specific mAm RNA Methyltransferase PCIF1 Regulates Transcript Levels in Mouse Tissues.
Cell Rep. 2020 Aug 18;32(7):108038. doi: 10.1016/j.celrep.2020.108038.
6
Cap-specific terminal -methylation of RNA by an RNA polymerase II-associated methyltransferase.
Science. 2019 Jan 11;363(6423). doi: 10.1126/science.aav0080. Epub 2018 Nov 22.
7
Enzymatic characterization of mRNA cap adenosine-N6 methyltransferase PCIF1 activity on uncapped RNAs.
J Biol Chem. 2022 Apr;298(4):101751. doi: 10.1016/j.jbc.2022.101751. Epub 2022 Feb 19.
8
Methylation of viral mRNA cap structures by PCIF1 attenuates the antiviral activity of interferon-β.
Proc Natl Acad Sci U S A. 2021 Jul 20;118(29). doi: 10.1073/pnas.2025769118.
9
PCIF1-mediated deposition of 5'-cap ,2'--dimethyladenosine in ACE2 and TMPRSS2 mRNA regulates susceptibility to SARS-CoV-2 infection.
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2210361120. doi: 10.1073/pnas.2210361120. Epub 2023 Jan 23.
10
PCIF1, the only methyltransferase of N6,2-O-dimethyladenosine.
Cancer Cell Int. 2023 Oct 1;23(1):226. doi: 10.1186/s12935-023-03066-7.

引用本文的文献

3
Graft-seq precisely maps RNA modifications via site-specific chemical grafting strategy.
Cell Rep Methods. 2025 Jul 21;5(7):101103. doi: 10.1016/j.crmeth.2025.101103. Epub 2025 Jul 10.
4
The catalytic efficiency of METTL16 affects cellular processes by governing the intracellular S-adenosylmethionine setpoint.
Cell Rep. 2025 Jul 22;44(7):115966. doi: 10.1016/j.celrep.2025.115966. Epub 2025 Jul 10.
6
The importance of physiological and disease contexts in capturing mRNA modifications.
Nat Struct Mol Biol. 2025 May;32(5):780-789. doi: 10.1038/s41594-025-01548-y. Epub 2025 May 16.
7
mA alters ribosome dynamics to initiate mRNA degradation.
Cell. 2025 May 5. doi: 10.1016/j.cell.2025.04.020.
8
10
Structural Features of 5' Untranslated Region in Translational Control of Eukaryotes.
Int J Mol Sci. 2025 Feb 25;26(5):1979. doi: 10.3390/ijms26051979.

本文引用的文献

1
Cap-specific, terminal N-methylation by a mammalian mAm methyltransferase.
Cell Res. 2019 Jan;29(1):80-82. doi: 10.1038/s41422-018-0117-4. Epub 2018 Nov 28.
2
Cap-specific terminal -methylation of RNA by an RNA polymerase II-associated methyltransferase.
Science. 2019 Jan 11;363(6423). doi: 10.1126/science.aav0080. Epub 2018 Nov 22.
3
GENCODE reference annotation for the human and mouse genomes.
Nucleic Acids Res. 2019 Jan 8;47(D1):D766-D773. doi: 10.1093/nar/gky955.
4
N-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response.
Mol Cell. 2018 Feb 15;69(4):636-647.e7. doi: 10.1016/j.molcel.2018.01.019. Epub 2018 Feb 8.
5
Thiol-linked alkylation of RNA to assess expression dynamics.
Nat Methods. 2017 Dec;14(12):1198-1204. doi: 10.1038/nmeth.4435. Epub 2017 Sep 25.
7
Defining a Cancer Dependency Map.
Cell. 2017 Jul 27;170(3):564-576.e16. doi: 10.1016/j.cell.2017.06.010.
8
Transcriptome-wide measurement of translation by ribosome profiling.
Methods. 2017 Aug 15;126:112-129. doi: 10.1016/j.ymeth.2017.05.028. Epub 2017 Jun 1.
9
Riborex: fast and flexible identification of differential translation from Ribo-seq data.
Bioinformatics. 2017 Jun 1;33(11):1735-1737. doi: 10.1093/bioinformatics/btx047.
10
MetaPlotR: a Perl/R pipeline for plotting metagenes of nucleotide modifications and other transcriptomic sites.
Bioinformatics. 2017 May 15;33(10):1563-1564. doi: 10.1093/bioinformatics/btx002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验