Department of Biochemistry and Molecular Biology, 975 NE 10th St., BRC 417, OUHSC, Oklahoma City, OK 73104, USA.
J Biol Chem. 2012 Jan 13;287(3):2006-16. doi: 10.1074/jbc.M111.314021. Epub 2011 Nov 29.
Cytoplasmic prolyl 4-hydroxylases (PHDs) have a primary role in O(2) sensing in animals via modification of the transcriptional factor subunit HIFα, resulting in its polyubiquitination by the E3(VHL)ubiquitin (Ub) ligase and degradation in the 26 S proteasome. Previously thought to be restricted to animals, a homolog (P4H1) of HIFα-type PHDs is expressed in the social amoeba Dictyostelium where it also exhibits characteristics of an O(2) sensor for development. Dictyostelium lacks HIFα, and P4H1 modifies a different protein, Skp1, an adaptor of the SCF class of E3-Ub ligases related to the E3(VHL)Ub ligase that targets animal HIFα. Normally, the HO-Skp1 product of the P4H1 reaction is capped by a GlcNAc sugar that can be subsequently extended to a pentasaccharide by novel glycosyltransferases. To analyze the role of glycosylation, the Skp1 GlcNAc-transferase locus gnt1 was modified with a missense mutation to block catalysis or a stop codon to truncate the protein. Despite the accumulation of the hydroxylated form of Skp1, Skp1 was not destabilized based on metabolic labeling. However, hydroxylation alone allowed for partial correction of the high O(2) requirement of P4H1-null cells, therefore revealing both glycosylation-independent and glycosylation-dependent roles for hydroxylation. Genetic complementation of the latter function required an enzymatically active form of Gnt1. Because the effect of the gnt1 deficiency depended on P4H1, and Skp1 was the only protein labeled when the GlcNAc-transferase was restored to mutant extracts, Skp1 apparently mediates the cellular functions of both P4H1 and Gnt1. Although Skp1 stability itself is not affected by hydroxylation, its modification may affect the stability of targets of Skp1-dependent Ub ligases.
细胞质脯氨酰 4-羟化酶(PHD)在动物的 O2 感应中起主要作用,通过修饰转录因子亚基 HIFα,导致其被 E3(VHL)泛素(Ub)连接酶多泛素化,并在 26S 蛋白酶体中降解。以前认为仅限于动物,HIFα 型 PHD 的同源物(P4H1)在社会阿米巴 Dictyostelium 中表达,它也表现出作为发育 O2 传感器的特征。Dictyostelium 缺乏 HIFα,而 P4H1 修饰不同的蛋白质 Skp1,Skp1 是与靶向动物 HIFα 的 E3(VHL)Ub 连接酶相关的 SCF 类 E3-Ub 连接酶的衔接子。通常,P4H1 反应的 HO-Skp1 产物被 GlcNAc 糖封端,随后可以通过新型糖基转移酶延伸为五糖。为了分析糖基化的作用,用错义突变修饰 Skp1 GlcNAc 转移酶基因座 gnt1 以阻断催化或终止密码子以截断蛋白质。尽管 Skp1 的羟化形式积累,但基于代谢标记,Skp1 并未失稳。然而,羟化作用本身允许 P4H1 缺失细胞对高 O2 需求的部分纠正,因此揭示了羟化作用的非依赖性和依赖性作用。后者功能的遗传互补需要具有酶活性的 Gnt1 形式。由于 gnt1 缺陷的影响取决于 P4H1,并且当 GlcNAc 转移酶被恢复到突变体提取物中时,只有 Skp1 被标记,因此 Skp1 显然介导了 P4H1 和 Gnt1 的细胞功能。虽然 Skp1 稳定性本身不受羟化作用影响,但它的修饰可能会影响 Skp1 依赖性 Ub 连接酶靶标的稳定性。