Shao Gonglei, Xue Xiong-Xiong, Zhou Xionglin, Xu Jie, Jin Yuanyuan, Qi Shuyan, Liu Nan, Duan Huigao, Wang Shanshan, Li Shisheng, Ouzounian Miray, Hu Travis Shihao, Luo Jun, Liu Song, Feng Yexin
Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P.R. China.
Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics , Hunan University , Changsha 410082 , P.R. China.
ACS Nano. 2019 Jul 23;13(7):8265-8274. doi: 10.1021/acsnano.9b03648. Epub 2019 Jul 10.
Shape engineering plays a crucial role in the application of two-dimensional (2D) layered metal dichalcogenide (LMD) crystalline materials in terms of physical and chemical property modulation. However, controllable growth of 1T phase tin disulfide (SnS) with multifarious morphologies has rarely been reported and remains challenging. Herein, we report a direct synthesis of large-size, uniform, and atomically thin 1T-SnS with multiple morphologies by adding potassium halides a facile chemical vapor deposition process. A variety of morphologies, , from hexagon, triangle, windmill, and dendritic to coralloid, corresponding to fractal dimensions from 1.01 to 1.81 are accurately controlled by growth conditions. Moreover, the Sn concentration controls the morphology change of SnS. The edge length of the SnS dendritic flake can grow larger than 500 μm in 5 min. Potassium halides can significantly reduce the surface migration barrier of the SnS cluster and enhance the SnS adhesion force with substrate to facilitate efficient high in-plane growth of monolayer SnS compared to sodium halides by density functional theory calculations. More branched SnS with higher fractal dimension provides more active sites for enhancing hydrogen evolution reactions. Importantly, we prove that potassium halides are preferable for 1T-phase LMDs structures, while sodium halides are more suitable for 2H-phase materials. The growth mechanism proposed here provides a general approach for controllable-phase synthesis of 2D LMD crystals and related heterostructures. Shape engineering of 2D materials also provides a strategy to tune LMD properties for demanding applications.
在二维(2D)层状金属二硫属化物(LMD)晶体材料的物理和化学性质调制应用中,形貌工程起着至关重要的作用。然而,具有多种形貌的1T相二硫化锡(SnS)的可控生长鲜有报道,仍然具有挑战性。在此,我们报道了通过添加卤化钾,采用简便的化学气相沉积工艺直接合成具有多种形貌的大尺寸、均匀且原子级薄的1T-SnS。通过生长条件精确控制了从六边形、三角形、风车形、树枝状到珊瑚状等多种形貌,其分形维数从1.01到1.81不等。此外,Sn浓度控制着SnS的形貌变化。SnS树枝状薄片的边长在5分钟内可生长至大于500μm。通过密度泛函理论计算表明,与卤化钠相比,卤化钾可显著降低SnS团簇的表面迁移势垒,并增强SnS与衬底的附着力,从而促进单层SnS在平面内的高效生长。具有更高分形维数的更多分支的SnS为增强析氢反应提供了更多活性位点。重要的是,我们证明卤化钾更适合于1T相LMD结构,而卤化钠更适合于2H相材料。这里提出的生长机制为二维LMD晶体及相关异质结构的可控相合成提供了一种通用方法。二维材料的形貌工程也为调整LMD性能以满足苛刻应用提供了一种策略。