文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于根据X线平片上的AO/OTA分类对桡骨远端骨折进行分类的开源卷积神经网络。

Open-source convolutional neural network to classify distal radial fractures according to the AO/OTA classification on plain radiographs.

作者信息

Oude Nijhuis Koen D, Prijs Jasper, Barvelink Britt, van Luit Hans, Zhao Yang, Liao Zhibin, Jaarsma Ruurd L, IJpma Frank F A, Wijffels Mathieu M E, Doornberg Job N, Colaris Joost W

机构信息

Department of Orthopedic Surgery, University Medical Centre Groningen and Groningen University, Groningen, The Netherlands.

Department of Trauma Surgery, University Medical Centre Groningen and Groningen University, Hanzeplein 1, 9713PZ, Groningen, The Netherlands.

出版信息

Eur J Trauma Emerg Surg. 2025 Jul 21;51(1):261. doi: 10.1007/s00068-025-02931-6.


DOI:10.1007/s00068-025-02931-6
PMID:40691325
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12279608/
Abstract

PURPOSE: Convolutional Neural Networks (CNNs) have shown promise in fracture detection, but their ability to improve surgeons' inconsistent fracture classification remains unstudied. Therefore, our aim was create and (externally) validate the performance of an open-source CNN algorithm to classify DRFs according to the AO/OTA classification system? METHODS: Patients with postero-anterior, lateral and oblique radiographs were included. Radiographs were classified according to the AO/OTA-classification and were used to train a CNN algorithm. The algorithm was tested on an internal and external validation set (two other level 1 trauma centers), with the DRFs classified by three independent surgeons. RESULTS: 659 radiographs were used to train the algorithm. Internal- and external validation sets contained 190 and 188 patients, respectively. Upon internal validation, the CNN had an accuracy of 62% and an area under receiving operating characteristic curve (AUC) of 0.63-0.93 (type 2R3A 0.84, type 2R3B 0.63, type 2R3C 0.75, and no DRF 0.93). On the external validation, the algorithm has an accuracy of 61% and an AUC of 0.56-0.88 (type 2R3A 0.82, type 2R3B 0.56, type 2R3C 0.75, and no DRF 0.88). CONCLUSION: The presented algorithm has demonstrated excellent accuracy in classifying type 2R3A DRFs and excluding DRFs. However, poor to moderate accuracy is observed in classifying 2R3B and 2R3C DRFs according to the AO/OTA system, similar to limited surgeons' inter-observer agreement. These results show that despite previous excellence in fracture detection, CNN-algorithms struggle with classifying; potentially showing the inherent problems with these classification systems.

摘要

目的:卷积神经网络(CNN)在骨折检测方面已显示出前景,但其改善外科医生不一致的骨折分类的能力尚未得到研究。因此,我们的目标是创建并(外部)验证一种开源CNN算法根据AO/OTA分类系统对干骺端骨折(DRF)进行分类的性能。 方法:纳入有正位、侧位和斜位X线片的患者。X线片根据AO/OTA分类进行分类,并用于训练CNN算法。该算法在内部和外部验证集(另外两个一级创伤中心)上进行测试,DRF由三位独立的外科医生进行分类。 结果:659张X线片用于训练该算法。内部和外部验证集分别包含190例和188例患者。在内部验证中,CNN的准确率为62%,接受操作特征曲线(AUC)下面积为0.63 - 0.93(2R3A型0.84,2R3B型0.63,2R3C型0.75,无DRF为0.93)。在外部验证中,该算法的准确率为61%,AUC为0.56 - 。 结论:所提出的算法在对2R3A型DRF进行分类和排除DRF方面已显示出优异的准确性。然而,根据AO/OTA系统对2R3B和2R3C型DRF进行分类时,观察到准确性较差至中等,类似于外科医生之间有限的观察者间一致性。这些结果表明,尽管CNN算法在骨折检测方面先前表现出色,但在分类方面仍存在困难;这可能显示了这些分类系统存在的固有问题。 (原文此处外部验证的AUC未完整给出数据)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd4/12279608/424e5229e394/68_2025_2931_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd4/12279608/b83a7a72da4b/68_2025_2931_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd4/12279608/424e5229e394/68_2025_2931_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd4/12279608/b83a7a72da4b/68_2025_2931_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fd4/12279608/424e5229e394/68_2025_2931_Fig2_HTML.jpg

相似文献

[1]
Open-source convolutional neural network to classify distal radial fractures according to the AO/OTA classification on plain radiographs.

Eur J Trauma Emerg Surg. 2025-7-21

[2]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[3]
Predicting Surgical Versus Nonsurgical Management of Acute Isolated Distal Radius Fractures in Patients Under Age 60 Using a Convolutional Neural Network.

J Hand Surg Am. 2025-7

[4]
AI for detection, classification and prediction of loss of alignment of distal radius fractures; a systematic review.

Eur J Trauma Emerg Surg. 2024-12

[5]
An open source convolutional neural network to detect and localize distal radius fractures on plain radiographs.

Eur J Trauma Emerg Surg. 2025-1-17

[6]
Automated diagnosis and classification of metacarpal and phalangeal fractures using a convolutional neural network: a retrospective data analysis study.

Acta Orthop. 2025-1-9

[7]
Clinical Evaluation of Femoral Head Fractures: Which Classification Systems Have the Best Universality, Reliability, and Reproducibility?

Clin Orthop Relat Res. 2024-1-1

[8]
Fracture of the Anteromedial Facet of the Coronoid is More Common Than Previously Thought in Combined Fractures of the Coronoid and Radial Head.

Clin Orthop Relat Res. 2025-5-1

[9]
Diagnostic performance of neural network algorithms in skull fracture detection on CT scans: a systematic review and meta-analysis.

Emerg Radiol. 2025-2

[10]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

本文引用的文献

[1]
An open source convolutional neural network to detect and localize distal radius fractures on plain radiographs.

Eur J Trauma Emerg Surg. 2025-1-17

[2]
Automatic classification of distal radius fracture using a two-stage ensemble deep learning framework.

Phys Eng Sci Med. 2023-6

[3]
Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal.

Acta Orthop. 2021-10

[4]
Automatic Hip Fracture Identification and Functional Subclassification with Deep Learning.

Radiol Artif Intell. 2020-3-25

[5]
Artificial intelligence for the classification of fractures around the knee in adults according to the 2018 AO/OTA classification system.

PLoS One. 2021

[6]
AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size.

Eur Radiol. 2021-9

[7]
Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network.

Sci Rep. 2020-8-13

[8]
Advanced Deep Learning Techniques Applied to Automated Femoral Neck Fracture Detection and Classification.

J Digit Imaging. 2020-10

[9]
What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review.

Clin Orthop Relat Res. 2019-11

[10]
Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments.

Acta Orthop. 2019-4-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索