Suppr超能文献

使用卷积神经网络对手掌骨和指骨骨折进行自动诊断和分类:一项回顾性数据分析研究。

Automated diagnosis and classification of metacarpal and phalangeal fractures using a convolutional neural network: a retrospective data analysis study.

作者信息

Axenhus Michael, Wallin Anna, Havela Jonas, Severin Sara, Karahan Ablikim, Gordon Max, Magnéli Martin

机构信息

Department of Orthopaedic Surgery, Danderyd Hospital, Stockholm; Department of Clinical Sciences at Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden.

Department of Clinical Sciences at Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden.

出版信息

Acta Orthop. 2025 Jan 9;96:13-18. doi: 10.2340/17453674.2024.42702.

Abstract

BACKGROUND AND PURPOSE

Hand fractures are commonly presented in emergency departments, yet diagnostic errors persist, leading to potential complications. The use of artificial intelligence (AI) in fracture detection has shown promise, but research focusing on hand metacarpal and phalangeal fractures remains limited. We aimed to train and evaluate a convolutional neural network (CNN) model to diagnose metacarpal and phalangeal fractures using plain radiographs according to the AO/OTA classification system and custom classifiers.

METHODS

A retrospective analysis of 7,515 examinations comprising 27,965 images was conducted, with datasets divided into training, validation, and test datasets. A CNN architecture was based on ResNet and implemented using PyTorch, with the integration of data augmentation techniques.

RESULTS

The CNN model achieved a mean weighted AUC of 0.84 for hand fractures, with 86% sensitivity and 76% specificity. The model performed best in diagnosing transverse metacarpal fractures, AUC = 0.91, 100% sensitivity, 87% specificity, and tuft phalangeal fractures, AUC = 0.97, 100% sensitivity, 96% specificity. Performance was lower for complex patterns like oblique phalangeal fractures, AUC = 0.76.

CONCLUSION

Our study demonstrated that a CNN model can effectively diagnose and classify metacarpal and phalangeal fractures using plain radiographs, achieving a mean weighted AUC of 0.84. 7 categories were deemed as acceptable, 9 categories as excellent, and 3 categories as outstanding. Our findings indicate that a CNN model may be used in the classification of hand fractures.

摘要

背景与目的

手部骨折在急诊科较为常见,但诊断错误仍然存在,可能导致潜在并发症。人工智能(AI)在骨折检测中的应用已显示出前景,但针对手部掌骨和指骨骨折的研究仍然有限。我们旨在训练和评估一个卷积神经网络(CNN)模型,根据AO/OTA分类系统和自定义分类器,使用X线平片诊断掌骨和指骨骨折。

方法

对7515例检查(共27965张图像)进行回顾性分析,将数据集分为训练集、验证集和测试集。基于ResNet构建CNN架构,并使用PyTorch实现,同时集成数据增强技术。

结果

CNN模型对手部骨折的平均加权AUC为0.84,灵敏度为86%,特异度为76%。该模型在诊断横行掌骨骨折(AUC = 0.91,灵敏度100%,特异度87%)和指骨粗隆骨折(AUC = 0.97,灵敏度100%,特异度96%)方面表现最佳。对于斜形指骨骨折等复杂类型,性能较低(AUC = 0.76)。

结论

我们的研究表明,CNN模型可以使用X线平片有效地诊断和分类掌骨和指骨骨折,平均加权AUC为0.84。7个类别被认为可接受,9个类别为优秀,3个类别为出色。我们的研究结果表明,CNN模型可用于手部骨折的分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验