Suppr超能文献

古菌多药和毒素外排(MATE)转运蛋白的 N 端结构域介导质子偶联,这是原核药物耐药性所必需的。

The N-terminal domain of an archaeal multidrug and toxin extrusion (MATE) transporter mediates proton coupling required for prokaryotic drug resistance.

机构信息

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232.

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232

出版信息

J Biol Chem. 2019 Aug 23;294(34):12807-12814. doi: 10.1074/jbc.RA119.009195. Epub 2019 Jul 9.

Abstract

As a contributor to multidrug resistance, the family of multidrug and toxin extrusion (MATE) transporters couples the efflux of chemically dissimilar compounds to electrochemical ion gradients. Although divergent transport mechanisms have been proposed for these transporters, previous structural and functional analyses of members of the MATE subfamily DinF suggest that the N-terminal domain (NTD) supports substrate and ion binding. In this report, we investigated the relationship of ligand binding within the NTD to the drug resistance mechanism of the H-dependent MATE from the hyperthermophilic archaeon (PfMATE). To facilitate this study, we developed a cell growth assay in to characterize the resistance conferred by PfMATE to toxic concentrations of the antimicrobial compound rhodamine 6G. Expression of WT PfMATE promoted cell growth in the presence of drug, but amino acid substitutions of conserved NTD residues compromised drug resistance. Steady-state binding analysis with purified PfMATE indicated that substrate affinity was unperturbed in these NTD variants. However, exploiting Trp fluorescence as an intrinsic reporter of conformational changes, we found that these variants impaired formation of a unique H-stabilized structural intermediate. These results imply that disruption of H coupling is the origin of compromised toxin resistance in PfMATE variants. These findings support a model mechanism wherein the NTD mediates allosteric coupling to ion gradients through conformational changes to drive substrate transport in PfMATE. Furthermore, the results provide evidence for diverging transport mechanisms within a prokaryotic MATE subfamily.

摘要

作为多药耐药性的贡献者,多药和毒素外排(MATE)转运蛋白家族将化学上不同的化合物的外排与电化学离子梯度偶联。尽管已经提出了这些转运蛋白的不同转运机制,但先前对 MATE 亚家族 DinF 成员的结构和功能分析表明,N 端结构域(NTD)支持底物和离子结合。在本报告中,我们研究了 NTD 内配体结合与来自高温古菌(PfMATE)的 H 依赖性 MATE 的耐药机制之间的关系。为了便于进行这项研究,我们开发了一种在 中进行的细胞生长测定法,以表征 PfMATE 赋予对抗微生物化合物 Rhodamine 6G 的毒性浓度的耐药性。WT PfMATE 的表达促进了药物存在下的细胞生长,但保守的 NTD 残基的氨基酸取代破坏了药物抗性。用纯化的 PfMATE 进行的稳态结合分析表明,这些 NTD 变体中的底物亲和力未受影响。然而,利用色氨酸荧光作为构象变化的固有报告,我们发现这些变体破坏了独特的 H 稳定的结构中间物的形成。这些结果表明,H 偶联的破坏是 PfMATE 变体中毒素抗性受损的原因。这些发现支持了一种模型机制,其中 NTD 通过构象变化介导变构耦合到离子梯度,以驱动 PfMATE 中的底物转运。此外,这些结果为在原核 MATE 亚家族内存在不同的转运机制提供了证据。

相似文献

2
Affinity-directed substrate/H-antiport by a MATE transporter.
Structure. 2024 Aug 8;32(8):1150-1164.e3. doi: 10.1016/j.str.2024.05.004. Epub 2024 May 29.
3
Sequence and structural determinants of ligand-dependent alternating access of a MATE transporter.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4732-4740. doi: 10.1073/pnas.1917139117. Epub 2020 Feb 19.
4
Broadly conserved Na-binding site in the N-lobe of prokaryotic multidrug MATE transporters.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6172-E6181. doi: 10.1073/pnas.1802080115. Epub 2018 Jun 18.
5
Mechanisms for Two-Step Proton Transfer Reactions in the Outward-Facing Form of MATE Transporter.
Biophys J. 2016 Mar 29;110(6):1346-54. doi: 10.1016/j.bpj.2016.01.027.
7
Inward-facing conformation of a multidrug resistance MATE family transporter.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12275-12284. doi: 10.1073/pnas.1904210116. Epub 2019 Jun 3.
8
Structural basis for the drug extrusion mechanism by a MATE multidrug transporter.
Nature. 2013 Apr 11;496(7444):247-51. doi: 10.1038/nature12014. Epub 2013 Mar 27.
9
Conserved binding site in the N-lobe of prokaryotic MATE transporters suggests a role for Na in ion-coupled drug efflux.
J Biol Chem. 2021 Jan-Jun;296:100262. doi: 10.1016/j.jbc.2021.100262. Epub 2021 Jan 8.
10
Principles of Alternating Access in Multidrug and Toxin Extrusion (MATE) Transporters.
J Mol Biol. 2021 Aug 6;433(16):166959. doi: 10.1016/j.jmb.2021.166959. Epub 2021 Mar 24.

引用本文的文献

2
Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation.
FEMS Microbiol Rev. 2023 Nov 1;47(6). doi: 10.1093/femsre/fuad060.
4
Proton-driven alternating access in a spinster lipid transporter.
Nat Commun. 2022 Sep 2;13(1):5161. doi: 10.1038/s41467-022-32759-2.
5
Using the Knowledge of Post-transcriptional Regulations to Guide Gene Selections for Molecular Breeding in Soybean.
Front Plant Sci. 2022 Mar 31;13:867731. doi: 10.3389/fpls.2022.867731. eCollection 2022.
6
The Poly-Glutamate Motif of GmMATE4 Regulates Its Isoflavone Transport Activity.
Membranes (Basel). 2022 Feb 10;12(2):206. doi: 10.3390/membranes12020206.
7
The Structure and Mechanism of Drug Transporters.
Methods Mol Biol. 2021;2342:193-234. doi: 10.1007/978-1-0716-1554-6_8.
8
Principles of Alternating Access in Multidrug and Toxin Extrusion (MATE) Transporters.
J Mol Biol. 2021 Aug 6;433(16):166959. doi: 10.1016/j.jmb.2021.166959. Epub 2021 Mar 24.
9
An emerging role for cyclic dinucleotide phosphodiesterase and nanoRNase activities in Mycoplasma bovis: Securing survival in cell culture.
PLoS Pathog. 2020 Jun 29;16(6):e1008661. doi: 10.1371/journal.ppat.1008661. eCollection 2020 Jun.
10
Sequence and structural determinants of ligand-dependent alternating access of a MATE transporter.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4732-4740. doi: 10.1073/pnas.1917139117. Epub 2020 Feb 19.

本文引用的文献

1
Structural Basis of H-Dependent Conformational Change in a Bacterial MATE Transporter.
Structure. 2019 Feb 5;27(2):293-301.e3. doi: 10.1016/j.str.2018.10.004. Epub 2018 Nov 15.
2
Broadly conserved Na-binding site in the N-lobe of prokaryotic multidrug MATE transporters.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6172-E6181. doi: 10.1073/pnas.1802080115. Epub 2018 Jun 18.
3
Sodium and proton coupling in the conformational cycle of a MATE antiporter from .
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6182-E6190. doi: 10.1073/pnas.1802417115. Epub 2018 Jun 18.
4
Structural basis for xenobiotic extrusion by eukaryotic MATE transporter.
Nat Commun. 2017 Nov 21;8(1):1633. doi: 10.1038/s41467-017-01541-0.
5
Crystal Structure of a Plant Multidrug and Toxic Compound Extrusion Family Protein.
Structure. 2017 Sep 5;25(9):1455-1460.e2. doi: 10.1016/j.str.2017.07.009.
6
Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps.
Biochem Pharmacol. 2017 Jun 1;133:43-62. doi: 10.1016/j.bcp.2016.10.005. Epub 2016 Oct 17.
7
Multidrug efflux pumps and their role in antibiotic and antiseptic resistance: a pharmacodynamic perspective.
Expert Opin Drug Metab Toxicol. 2017 Mar;13(3):301-309. doi: 10.1080/17425255.2017.1251581. Epub 2016 Nov 2.
8
MATE transport of the E. coli-derived genotoxin colibactin.
Nat Microbiol. 2016 Jan 11;1:15009. doi: 10.1038/nmicrobiol.2015.9.
9
ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules.
Nucleic Acids Res. 2016 Jul 8;44(W1):W344-50. doi: 10.1093/nar/gkw408. Epub 2016 May 10.
10
Mechanisms for Two-Step Proton Transfer Reactions in the Outward-Facing Form of MATE Transporter.
Biophys J. 2016 Mar 29;110(6):1346-54. doi: 10.1016/j.bpj.2016.01.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验