Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232.
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232
J Biol Chem. 2019 Aug 23;294(34):12807-12814. doi: 10.1074/jbc.RA119.009195. Epub 2019 Jul 9.
As a contributor to multidrug resistance, the family of multidrug and toxin extrusion (MATE) transporters couples the efflux of chemically dissimilar compounds to electrochemical ion gradients. Although divergent transport mechanisms have been proposed for these transporters, previous structural and functional analyses of members of the MATE subfamily DinF suggest that the N-terminal domain (NTD) supports substrate and ion binding. In this report, we investigated the relationship of ligand binding within the NTD to the drug resistance mechanism of the H-dependent MATE from the hyperthermophilic archaeon (PfMATE). To facilitate this study, we developed a cell growth assay in to characterize the resistance conferred by PfMATE to toxic concentrations of the antimicrobial compound rhodamine 6G. Expression of WT PfMATE promoted cell growth in the presence of drug, but amino acid substitutions of conserved NTD residues compromised drug resistance. Steady-state binding analysis with purified PfMATE indicated that substrate affinity was unperturbed in these NTD variants. However, exploiting Trp fluorescence as an intrinsic reporter of conformational changes, we found that these variants impaired formation of a unique H-stabilized structural intermediate. These results imply that disruption of H coupling is the origin of compromised toxin resistance in PfMATE variants. These findings support a model mechanism wherein the NTD mediates allosteric coupling to ion gradients through conformational changes to drive substrate transport in PfMATE. Furthermore, the results provide evidence for diverging transport mechanisms within a prokaryotic MATE subfamily.
作为多药耐药性的贡献者,多药和毒素外排(MATE)转运蛋白家族将化学上不同的化合物的外排与电化学离子梯度偶联。尽管已经提出了这些转运蛋白的不同转运机制,但先前对 MATE 亚家族 DinF 成员的结构和功能分析表明,N 端结构域(NTD)支持底物和离子结合。在本报告中,我们研究了 NTD 内配体结合与来自高温古菌(PfMATE)的 H 依赖性 MATE 的耐药机制之间的关系。为了便于进行这项研究,我们开发了一种在 中进行的细胞生长测定法,以表征 PfMATE 赋予对抗微生物化合物 Rhodamine 6G 的毒性浓度的耐药性。WT PfMATE 的表达促进了药物存在下的细胞生长,但保守的 NTD 残基的氨基酸取代破坏了药物抗性。用纯化的 PfMATE 进行的稳态结合分析表明,这些 NTD 变体中的底物亲和力未受影响。然而,利用色氨酸荧光作为构象变化的固有报告,我们发现这些变体破坏了独特的 H 稳定的结构中间物的形成。这些结果表明,H 偶联的破坏是 PfMATE 变体中毒素抗性受损的原因。这些发现支持了一种模型机制,其中 NTD 通过构象变化介导变构耦合到离子梯度,以驱动 PfMATE 中的底物转运。此外,这些结果为在原核 MATE 亚家族内存在不同的转运机制提供了证据。