Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
J Biol Chem. 2021 Jan-Jun;296:100262. doi: 10.1016/j.jbc.2021.100262. Epub 2021 Jan 8.
In both prokaryotes and eukaryotes, multidrug and toxic-compound extrusion (MATE) transporters catalyze the efflux of a broad range of cytotoxic compounds, including human-made antibiotics and anticancer drugs. MATEs are secondary-active antiporters, i.e., their drug-efflux activity is coupled to, and powered by, the uptake of ions down a preexisting transmembrane electrochemical gradient. Key aspects of this mechanism, however, remain to be delineated, such as its ion specificity and stoichiometry. We previously revealed the existence of a Na-binding site in a MATE transporter from Pyroccocus furiosus (PfMATE) and hypothesized that this site might be broadly conserved among prokaryotic MATEs. Here, we evaluate this hypothesis by analyzing VcmN and ClbM, which along with PfMATE are the only three prokaryotic MATEs whose molecular structures have been determined at atomic resolution, i.e. better than 3 Å. Reinterpretation of existing crystallographic data and molecular dynamics simulations indeed reveal an occupied Na-binding site in the N-terminal lobe of both structures, analogous to that identified in PfMATE. We likewise find this site to be strongly selective against K, suggesting it is mechanistically significant. Consistent with these computational results, DEER spectroscopy measurements for multiple doubly-spin-labeled VcmN constructs demonstrate Na-dependent changes in protein conformation. The existence of this binding site in three MATE orthologs implicates Na in the ion-coupled drug-efflux mechanisms of this class of transporters. These results also imply that observations of H-dependent activity likely stem either from a site elsewhere in the structure, or from H displacing Na under certain laboratory conditions, as has been noted for other Na-driven transport systems.
在原核生物和真核生物中,多药和毒性化合物外排(MATE)转运蛋白催化广泛的细胞毒性化合物的外排,包括人造抗生素和抗癌药物。MATE 是次级主动转运体,即它们的药物外排活性与离子沿着预先存在的跨膜电化学梯度的摄取偶联并由其驱动。然而,这种机制的一些关键方面仍有待描述,例如其离子特异性和化学计量。我们之前在 Pyroccocus furiosus(PfMATE)的 MATE 转运蛋白中揭示了 Na 结合位点的存在,并假设该位点可能在原核 MATE 中广泛保守。在这里,我们通过分析 VcmN 和 ClbM 来评估这一假设,这两种转运蛋白与 PfMATE 一起,是仅有的三种其分子结构已在原子分辨率(即优于 3Å)下确定的原核 MATE。对现有晶体学数据的重新解释和分子动力学模拟确实在这两种结构的 N 端结构域中揭示了一个占据的 Na 结合位点,类似于在 PfMATE 中鉴定的那个。我们同样发现该位点对 K 具有很强的选择性,表明它在机制上具有重要意义。与这些计算结果一致,对多个双自旋标记的 VcmN 构建体的 DEER 光谱测量表明,蛋白构象随 Na 的变化而变化。该结合位点在三种 MATE 同源物中的存在表明,Na 参与了该类转运蛋白的离子偶联药物外排机制。这些结果还表明,对 H 依赖性活性的观察可能源于结构中的其他部位,或者源于 H 在某些实验室条件下取代 Na,正如在其他 Na 驱动的运输系统中所指出的那样。