Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892.
Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6172-E6181. doi: 10.1073/pnas.1802080115. Epub 2018 Jun 18.
Multidrug and toxic-compound extrusion (MATE) proteins comprise an important but largely uncharacterized family of secondary-active transporters. In both eukaryotes and prokaryotes, these transporters protect the cell by catalyzing the efflux of a broad range of cytotoxic compounds, including human-made antibiotics and anticancer drugs. MATEs are thus potential pharmacological targets against drug-resistant pathogenic bacteria and tumor cells. The activity of MATEs is powered by transmembrane electrochemical ion gradients, but their molecular mechanism and ion specificity are not understood, in part because high-quality structural information is limited. Here, we use computational methods to study PfMATE, from , whose structure is the best resolved to date. Analysis of available crystallographic data and additional molecular dynamics simulations unequivocally reveal an occupied Na-binding site in the N-lobe of this transporter, which had not been previously recognized. We find this site to be selective against K and broadly conserved among prokaryotic MATEs, including homologs known to be Na-dependent such as NorM-VC, VmrA, and ClbM, for which the location of the Na site had been debated. We note, however, that the chemical makeup of the proposed Na site indicates it is weakly specific against H, explaining why MATEs featuring this Na-binding motif may be solely driven by H in laboratory conditions. We further posit that the concurrent coupling to H and Na gradients observed for some Na-driven MATEs owes to a second H-binding site, within the C-lobe. In summary, our study provides insights into the structural basis for the complex ion dependency of MATE transporters.
多药和毒性化合物外排(MATE)蛋白是一类重要但尚未充分研究的次级主动转运体家族。在真核生物和原核生物中,这些转运蛋白通过催化广泛的细胞毒性化合物(包括人造抗生素和抗癌药物)的外排,来保护细胞。因此,MATE 是针对耐药性病原菌和肿瘤细胞的潜在药物靶点。MATE 的活性由跨膜电化学离子梯度提供动力,但它们的分子机制和离子特异性尚不清楚,部分原因是高质量的结构信息有限。在这里,我们使用计算方法研究来自 PfMATE 的结构,该结构是迄今为止分辨率最高的结构。对现有晶体学数据和其他分子动力学模拟的分析明确揭示了该转运蛋白 N 结构域中存在一个占据的 Na 结合位点,该位点以前未被识别。我们发现该位点对 K 具有选择性,并且在包括已知依赖于 Na 的同源物(如 NorM-VC、VmrA 和 ClbM)的原核 MATE 中广泛保守,对于这些同源物,Na 结合位点的位置一直存在争议。然而,我们注意到,所提出的 Na 结合位点的化学组成表明其对 H 的特异性较弱,这解释了为什么具有这种 Na 结合基序的 MATE 可能仅在实验室条件下由 H 驱动。我们进一步假设,一些 Na 驱动的 MATE 观察到的同时与 H 和 Na 梯度偶联归因于 C 结构域内的第二个 H 结合位点。总之,我们的研究提供了对 MATE 转运蛋白复杂离子依赖性的结构基础的深入了解。