Suppr超能文献

利用随机回归模型获得的育种值进行纵向性状的遗传推断。

Leveraging Breeding Values Obtained from Random Regression Models for Genetic Inference of Longitudinal Traits.

出版信息

Plant Genome. 2019 Jun;12(2). doi: 10.3835/plantgenome2018.10.0075.

Abstract

Understanding the genetic basis of dynamic plant phenotypes has largely been limited because of a lack of space and labor resources needed to record dynamic traits, often destructively, for a large number of genotypes. However, the recent advent of image-based phenotyping platforms has provided the plant science community with an effective means to nondestructively evaluate morphological, developmental, and physiological processes at regular, frequent intervals for a large number of plants throughout development. The statistical frameworks typically used for genetic analyses (e.g., genome-wide association mapping, linkage mapping, and genomic prediction) in plant breeding and genetics are not particularly amenable for repeated measurements. Random regression (RR) models are routinely used in animal breeding for the genetic analysis of longitudinal traits and provide a robust framework for modeling trait trajectories and performing genetic analysis simultaneously. We recently used a RR approach for genomic prediction of shoot growth trajectories in rice ( L.) from 33,674 single nucleotide polymorphisms. In this study, we have extended this approach for genetic inference by leveraging genomic breeding values derived from RR models for rice shoot growth during early vegetative development. This approach provides improvements over conventional single time point analyses for discovering loci associated with shoot growth trajectories. The RR approach uncovers persistent as well as time-specific transient quantitative trait loci. This methodology can be widely applied to understand the genetic architecture of other complex polygenic traits with repeated measurements.

摘要

理解动态植物表型的遗传基础在很大程度上受到限制,因为缺乏记录大量基因型动态特征的空间和劳动力资源,而这些特征通常是具有破坏性的。然而,最近基于图像的表型平台的出现为植物科学界提供了一种有效的手段,可以在整个发育过程中定期、频繁地非破坏性地评估大量植物的形态、发育和生理过程。在植物育种和遗传学中,通常用于遗传分析的统计框架(例如全基因组关联映射、连锁映射和基因组预测)不太适合重复测量。随机回归(RR)模型在动物育种中通常用于纵向特征的遗传分析,并为特征轨迹建模和同时进行遗传分析提供了一个强大的框架。我们最近使用 RR 方法对来自 33674 个单核苷酸多态性的水稻( L.)芽生长轨迹进行了基因组预测。在这项研究中,我们通过利用 RR 模型衍生的水稻芽生长早期营养生长阶段的基因组育种值来扩展 RR 方法进行遗传推断。与传统的单次分析相比,这种方法在发现与芽生长轨迹相关的基因座方面有了改进。RR 方法揭示了与芽生长轨迹相关的持久和特定时间的瞬时数量性状基因座。这种方法可以广泛应用于理解具有重复测量的其他复杂多基因性状的遗传结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验