Suppr超能文献

使用滴管瓶传感器和深度学习对青光眼患者滴眼剂依从性进行自动监测的评估

Evaluation of Automatic Monitoring of Instillation Adherence Using Eye Dropper Bottle Sensor and Deep Learning in Patients With Glaucoma.

作者信息

Nishimura Kazuaki, Tabuchi Hitoshi, Nakakura Shunsuke, Nakatani Yoshiki, Yorihiro Akira, Hasegawa Shouichi, Tanabe Hirotaka, Noguchi Asuka, Aoki Ryota, Kiuchi Yoshiaki

机构信息

Department of Ophthalmology, Saneikai Tsukazaki Hospital, Himeji, Japan.

Research & Development Department, Nippon Gijutsu Center Co., Ltd., Himeji, Japan.

出版信息

Transl Vis Sci Technol. 2019 Jun 27;8(3):55. doi: 10.1167/tvst.8.3.55. eCollection 2019 May.

Abstract

PURPOSE

We developed and evaluated an eye dropper bottle sensor system comprising motion sensor with automatic motion waveform analysis using deep learning (DL) to accurately measure adherence of patients with antiglaucoma ophthalmic solution therapy.

METHODS

We enrolled 20 patients with open-angle glaucoma who were treated with either latanoprost ophthalmic solution 0.005% or latanoprost-timolol maleate fixed combination ophthalmic solution in both eyes. An eye dropper bottle sensor was installed at patients' homes, and they were asked to instill the medication and manually record each instillation time for 3 days. Waveform data were automatically collected from the eye dropper bottle sensor and judged as a complete instillation by the DL instillation assessment model. We compared the instillation times captured on the waveform data with those on each patient's record form. In addition, we also calculated instillation movement duration from Waveform data.

RESULTS

The developed eye bottle sensor detected all 60 instillation events (100%). Mean difference between patient and eye bottle sensor recorded time was 1 ± 1.22 (range, 0-3) minutes. Additionally, mean instillation movement duration was 16.1 ± 14.4 (range, 4-43) seconds. Two-way ANOVA revealed a significant difference in instillation movement duration among patients ( < 0.001) and across days ( < 0.001).

CONCLUSION

The eye dropper bottle sensor system developed by us can be used for automatic monitoring of instillation adherence in patients with glaucoma.

TRANSLATIONAL RELEVANCE

We believe that our eye dropper bottle sensor system will accurately measure adherence of all glaucoma patients as well as help glaucoma treatment.

摘要

目的

我们开发并评估了一种滴管瓶传感器系统,该系统包括带有自动运动波形分析的运动传感器,利用深度学习(DL)来准确测量青光眼眼药水治疗患者的用药依从性。

方法

我们招募了20例双眼接受0.005%拉坦前列素眼药水或拉坦前列素-马来酸噻吗洛尔固定复方眼药水治疗的开角型青光眼患者。在患者家中安装滴管瓶传感器,并要求他们滴入药物并手动记录每次滴入时间,为期3天。波形数据从滴管瓶传感器自动收集,并由深度学习滴入评估模型判断为一次完整滴入。我们将波形数据中记录的滴入时间与每位患者记录表格上的时间进行比较。此外,我们还从波形数据中计算了滴入动作持续时间。

结果

所开发的眼瓶传感器检测到了所有60次滴入事件(100%)。患者记录时间与眼瓶传感器记录时间的平均差值为1±1.22(范围为0 - 3)分钟。此外,平均滴入动作持续时间为16.1±14.4(范围为4 - 43)秒。双向方差分析显示患者之间(<0.001)和不同日期之间(<0.001)的滴入动作持续时间存在显著差异。

结论

我们开发的滴管瓶传感器系统可用于自动监测青光眼患者的滴入依从性。

转化相关性

我们相信我们的滴管瓶传感器系统将准确测量所有青光眼患者的依从性,并有助于青光眼治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b727/6602119/01e59e8cd561/i2164-2591-8-3-55-f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验