Mendez-Gonzalez Diego, Melle Sonia, Calderón Oscar G, Laurenti Marco, Cabrera-Granado E, Egatz-Gómez Ana, López-Cabarcos Enrique, Rubio-Retama Jorge, Díaz Elena
Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain.
Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain.
Nanoscale. 2019 Aug 7;11(29):13832-13844. doi: 10.1039/c9nr02039j. Epub 2019 Jul 11.
Metallic nanostructures have the potential to modify the anti-Stokes emission of upconverting nanoparticles (UCNPs) by coupling their plasmon resonance with either the excitation or the emission wavelength of the UCNPs. In this regard gold nanoparticles (AuNPs) have often been used in sensors for UCNP luminescence quenching or enhancement, although systematic studies are still needed in order to design optimal UCNP-AuNP based biosensors. Amidst mixed experimental evidence of quenching or enhancement, two key factors arise: the nanoparticle distance and nanoparticle size. In this work, we synthesize AuNPs of different sizes to assess their influence on the luminescence of UCNPs. We find that strong luminescence quenching due to resonance energy transfer is preferentially achieved for small AuNPs, peaking at an optimal size. A further increase in the AuNP size is accompanied by a reduction of luminescence quenching due to an incipient plasmonic enhancement effect. This enhancement counterbalances the luminescence quenching effect at the biggest tested AuNP size. The experimental findings are theoretically validated by studying the decay rate of the UCNP emitters near a gold nanoparticle using both a classical phenomenological model and the finite-difference time-domain method. Results from this study establish general guidelines to consider when designing sensors based on UCNPs-AuNPs as donor-quencher pairs, and suggest the potential of plasmon-induced luminescence enhancement as a sensing strategy.
金属纳米结构有可能通过将其等离子体共振与上转换纳米粒子(UCNPs)的激发波长或发射波长耦合,来改变UCNPs的反斯托克斯发射。在这方面,金纳米粒子(AuNPs)经常被用于UCNP发光猝灭或增强的传感器中,尽管为了设计基于UCNP-AuNP的最佳生物传感器仍需要进行系统研究。在关于猝灭或增强的混合实验证据中,出现了两个关键因素:纳米粒子距离和纳米粒子尺寸。在这项工作中,我们合成了不同尺寸的AuNPs,以评估它们对UCNPs发光的影响。我们发现,由于共振能量转移导致的强发光猝灭优先在小尺寸AuNPs中实现,在最佳尺寸时达到峰值。随着AuNP尺寸的进一步增加,由于初期的等离子体增强效应,发光猝灭会减少。这种增强在最大测试AuNP尺寸时抵消了发光猝灭效应。通过使用经典现象学模型和时域有限差分法研究金纳米粒子附近UCNP发射体的衰减率,从理论上验证了实验结果。这项研究的结果为设计基于UCNPs-AuNPs作为供体-猝灭对的传感器时应考虑的因素建立了一般指导原则,并表明等离子体诱导发光增强作为一种传感策略的潜力。