Suppr超能文献

利用基于机器学习的病变行为映射来识别认知功能障碍的解剖网络:空间忽视和注意力。

Using machine learning-based lesion behavior mapping to identify anatomical networks of cognitive dysfunction: Spatial neglect and attention.

机构信息

Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, 72076, Germany.

Department of Psychology, University of South Carolina, Columbia, 29208, USA.

出版信息

Neuroimage. 2019 Nov 1;201:116000. doi: 10.1016/j.neuroimage.2019.07.013. Epub 2019 Jul 9.

Abstract

Previous lesion behavior studies primarily used univariate lesion behavior mapping techniques to map the anatomical basis of spatial neglect after right brain damage. These studies led to inconsistent results and lively controversies. Given these inconsistencies, the idea of a wide-spread network that might underlie spatial orientation and neglect has been pushed forward. In such case, univariate lesion behavior mapping methods might have been inherently limited in detecting the presumed network due to limited statistical power. By comparing various univariate analyses with multivariate lesion-mapping based on support vector regression, we aimed to validate the network hypothesis directly in a large sample of 203 newly recruited right brain damaged patients. If the exact same correction factors and parameter combinations (FDR correction and dTLVC for lesion size control) were used, both univariate as well as multivariate approaches uncovered the same complex network pattern underlying spatial neglect. At the cortical level, lesion location dominantly affected the temporal cortex and its borders into inferior parietal and occipital cortices. Beyond, frontal and subcortical gray matter regions as well as white matter tracts connecting these regions were affected. Our findings underline the importance of a right network in spatial exploration and attention and specifically in the emergence of the core symptoms of spatial neglect.

摘要

先前的病灶行为研究主要使用单变量病灶行为映射技术来绘制右脑损伤后空间忽视的解剖学基础。这些研究导致了不一致的结果和激烈的争论。鉴于这些不一致,一个广泛的网络可能是空间定位和忽视的基础的想法被提了出来。在这种情况下,由于统计能力有限,单变量病灶行为映射方法可能在检测假定的网络方面存在固有局限性。通过将各种单变量分析与基于支持向量回归的多变量病灶映射进行比较,我们旨在直接在 203 名新招募的右脑损伤患者的大样本中验证网络假设。如果使用完全相同的校正因子和参数组合(FDR 校正和病变大小控制的 dTLVC),单变量和多变量方法都揭示了空间忽视背后相同的复杂网络模式。在皮质水平上,病灶位置主要影响颞叶及其边界的下顶叶和枕叶。此外,额叶和皮质下灰质区域以及连接这些区域的白质束也受到影响。我们的发现强调了右半球网络在空间探索和注意力中的重要性,特别是在空间忽视的核心症状的出现中。

相似文献

5
Neural bases of personal and extrapersonal neglect in humans.人类个人及空间忽视的神经基础。
Brain. 2007 Feb;130(Pt 2):431-41. doi: 10.1093/brain/awl265. Epub 2006 Sep 28.

引用本文的文献

6
Stable multivariate lesion symptom mapping.稳定的多变量病变症状映射
Apert Neuro. 2024;4. doi: 10.52294/001c.117311. Epub 2024 Jun 7.

本文引用的文献

7
The Computational Anatomy of Visual Neglect.视觉忽视的计算解剖学。
Cereb Cortex. 2018 Feb 1;28(2):777-790. doi: 10.1093/cercor/bhx316.
9
Mapping human brain lesions and their functional consequences.绘制人类大脑损伤及其功能后果图谱。
Neuroimage. 2018 Jan 15;165:180-189. doi: 10.1016/j.neuroimage.2017.10.028. Epub 2017 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验