Department of Neurology, Georgetown University, Washington, District of Columbia.
Research Division, MedStar National Rehabilitation Hospital, Washington, District of Columbia.
Hum Brain Mapp. 2018 Nov;39(11):4169-4182. doi: 10.1002/hbm.24289. Epub 2018 Jul 4.
Lesion-symptom mapping has become a cornerstone of neuroscience research seeking to localize cognitive function in the brain by examining the sequelae of brain lesions. Recently, multivariate lesion-symptom mapping methods have emerged, such as support vector regression, which simultaneously consider many voxels at once when determining whether damaged regions contribute to behavioral deficits (Zhang, Kimberg, Coslett, Schwartz, & Wang, ). Such multivariate approaches are capable of identifying complex dependences that traditional mass-univariate approach cannot. Here, we provide a new toolbox for support vector regression lesion-symptom mapping (SVR-LSM) that provides a graphical interface and enhances the flexibility and rigor of analyses that can be conducted using this method. Specifically, the toolbox provides cluster-level family-wise error correction via permutation testing, the capacity to incorporate arbitrary nuisance models for behavioral data and lesion data and makes available a range of lesion volume correction methods including a new approach that regresses lesion volume out of each voxel in the lesion maps. We demonstrate these new tools in a cohort of chronic left-hemisphere stroke survivors and examine the difference between results achieved with various lesion volume control methods. A strong bias was found toward brain wide lesion-deficit associations in both SVR-LSM and traditional mass-univariate voxel-based lesion symptom mapping when lesion volume was not adequately controlled. This bias was corrected using three different regression approaches; among these, regressing lesion volume out of both the behavioral score and the lesion maps provided the greatest sensitivity in analyses.
病灶-症状映射已成为神经科学研究的基石,通过检查脑损伤的后遗症,来定位大脑中的认知功能。最近,涌现出了多种变量病灶-症状映射方法,例如支持向量回归,它在确定受损区域是否导致行为缺陷时同时考虑了许多体素(Zhang、Kimberg、Coslett、Schwartz 和 Wang,)。这种多元方法能够识别传统的大规模单变量方法无法识别的复杂依赖关系。在这里,我们提供了一个用于支持向量回归病灶-症状映射(SVR-LSM)的新工具箱,该工具箱提供了图形界面,并增强了使用该方法进行分析的灵活性和严谨性。具体来说,该工具箱通过置换检验提供了簇级的全误差校正,能够为行为数据和病灶数据纳入任意的混杂模型,并提供了一系列病灶体积校正方法,包括一种新的方法,可以从病灶图中的每个体素中回归出病灶体积。我们在一组慢性左半球中风幸存者中展示了这些新工具,并检查了使用各种病灶体积控制方法所获得的结果之间的差异。当病灶体积未得到充分控制时,在 SVR-LSM 和传统的大规模单变量基于体素的病灶症状映射中都发现了强烈的大脑广泛病灶-缺陷关联的偏差。通过三种不同的回归方法纠正了这种偏差;在这些方法中,将病灶体积从行为评分和病灶图中同时回归出来,在分析中提供了最大的敏感性。