Suppr超能文献

多变量病灶症状映射工具箱及病灶-症状映射中病灶体积偏差与校正方法的研究。

A multivariate lesion symptom mapping toolbox and examination of lesion-volume biases and correction methods in lesion-symptom mapping.

机构信息

Department of Neurology, Georgetown University, Washington, District of Columbia.

Research Division, MedStar National Rehabilitation Hospital, Washington, District of Columbia.

出版信息

Hum Brain Mapp. 2018 Nov;39(11):4169-4182. doi: 10.1002/hbm.24289. Epub 2018 Jul 4.

Abstract

Lesion-symptom mapping has become a cornerstone of neuroscience research seeking to localize cognitive function in the brain by examining the sequelae of brain lesions. Recently, multivariate lesion-symptom mapping methods have emerged, such as support vector regression, which simultaneously consider many voxels at once when determining whether damaged regions contribute to behavioral deficits (Zhang, Kimberg, Coslett, Schwartz, & Wang, ). Such multivariate approaches are capable of identifying complex dependences that traditional mass-univariate approach cannot. Here, we provide a new toolbox for support vector regression lesion-symptom mapping (SVR-LSM) that provides a graphical interface and enhances the flexibility and rigor of analyses that can be conducted using this method. Specifically, the toolbox provides cluster-level family-wise error correction via permutation testing, the capacity to incorporate arbitrary nuisance models for behavioral data and lesion data and makes available a range of lesion volume correction methods including a new approach that regresses lesion volume out of each voxel in the lesion maps. We demonstrate these new tools in a cohort of chronic left-hemisphere stroke survivors and examine the difference between results achieved with various lesion volume control methods. A strong bias was found toward brain wide lesion-deficit associations in both SVR-LSM and traditional mass-univariate voxel-based lesion symptom mapping when lesion volume was not adequately controlled. This bias was corrected using three different regression approaches; among these, regressing lesion volume out of both the behavioral score and the lesion maps provided the greatest sensitivity in analyses.

摘要

病灶-症状映射已成为神经科学研究的基石,通过检查脑损伤的后遗症,来定位大脑中的认知功能。最近,涌现出了多种变量病灶-症状映射方法,例如支持向量回归,它在确定受损区域是否导致行为缺陷时同时考虑了许多体素(Zhang、Kimberg、Coslett、Schwartz 和 Wang,)。这种多元方法能够识别传统的大规模单变量方法无法识别的复杂依赖关系。在这里,我们提供了一个用于支持向量回归病灶-症状映射(SVR-LSM)的新工具箱,该工具箱提供了图形界面,并增强了使用该方法进行分析的灵活性和严谨性。具体来说,该工具箱通过置换检验提供了簇级的全误差校正,能够为行为数据和病灶数据纳入任意的混杂模型,并提供了一系列病灶体积校正方法,包括一种新的方法,可以从病灶图中的每个体素中回归出病灶体积。我们在一组慢性左半球中风幸存者中展示了这些新工具,并检查了使用各种病灶体积控制方法所获得的结果之间的差异。当病灶体积未得到充分控制时,在 SVR-LSM 和传统的大规模单变量基于体素的病灶症状映射中都发现了强烈的大脑广泛病灶-缺陷关联的偏差。通过三种不同的回归方法纠正了这种偏差;在这些方法中,将病灶体积从行为评分和病灶图中同时回归出来,在分析中提供了最大的敏感性。

相似文献

2
Multivariate lesion-symptom mapping using support vector regression.
Hum Brain Mapp. 2014 Dec;35(12):5861-76. doi: 10.1002/hbm.22590. Epub 2014 Jul 16.
3
An empirical evaluation of multivariate lesion behaviour mapping using support vector regression.
Hum Brain Mapp. 2019 Apr 1;40(5):1381-1390. doi: 10.1002/hbm.24476. Epub 2018 Dec 13.
4
Support vector regression based multivariate lesion-symptom mapping.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5599-602. doi: 10.1109/EMBC.2014.6944896.
5
Improved accuracy of lesion to symptom mapping with multivariate sparse canonical correlations.
Neuropsychologia. 2018 Jul 1;115:154-166. doi: 10.1016/j.neuropsychologia.2017.08.027. Epub 2017 Sep 5.
6
The impact of etiology in lesion-symptom mapping - A direct comparison between tumor and stroke.
Neuroimage Clin. 2023;37:103305. doi: 10.1016/j.nicl.2022.103305. Epub 2022 Dec 24.
7
Corrections for multiple comparisons in voxel-based lesion-symptom mapping.
Neuropsychologia. 2018 Jul 1;115:112-123. doi: 10.1016/j.neuropsychologia.2017.08.025. Epub 2017 Aug 26.
8
Multivariate Connectome-Based Symptom Mapping in Post-Stroke Patients: Networks Supporting Language and Speech.
J Neurosci. 2016 Jun 22;36(25):6668-79. doi: 10.1523/JNEUROSCI.4396-15.2016.
9
Bayesian lesion-deficit inference with Bayes factor mapping: Key advantages, limitations, and a toolbox.
Neuroimage. 2023 May 1;271:120008. doi: 10.1016/j.neuroimage.2023.120008. Epub 2023 Mar 11.
10

引用本文的文献

1
Structural and functional connectivity of vestibular graviceptive to sensory and motor circuits.
Brain Commun. 2025 Aug 8;7(4):fcaf290. doi: 10.1093/braincomms/fcaf290. eCollection 2025.
2
Neural Correlates of Rhythm in Post-Stroke Aphasia.
Neurobiol Lang (Camb). 2025 Aug 14;6. doi: 10.1162/nol.a.9. eCollection 2025.
3
Behavioral Clusters and Lesion Distributions in Ischemic Stroke, Based on NIHSS Similarity Network.
J Healthc Inform Res. 2025 Mar 26;9(3):401-436. doi: 10.1007/s41666-025-00197-6. eCollection 2025 Sep.
5
Competition between tool and hand motion impairs movement planning in limb apraxia.
bioRxiv. 2025 Jun 25:2025.04.07.647589. doi: 10.1101/2025.04.07.647589.
7
Role for Left Dorsomedial Prefrontal Cortex in Self-Generated, but not Externally Cued, Language Production.
Neurobiol Lang (Camb). 2025 Jun 12;6. doi: 10.1162/nol_a_00166. eCollection 2025.
8
Benchmarking machine learning models in lesion-symptom mapping for predicting language outcomes in stroke survivors.
Front Neuroimaging. 2025 May 30;4:1573816. doi: 10.3389/fnimg.2025.1573816. eCollection 2025.
10
Causal Lesion Evidence for Two Motor Speech Coordination Networks in the Brain.
bioRxiv. 2025 Jun 6:2025.06.05.658124. doi: 10.1101/2025.06.05.658124.

本文引用的文献

1
Lesion-symptom mapping in the study of spoken language understanding.
Lang Cogn Neurosci. 2017;32(7):891-899. doi: 10.1080/23273798.2016.1248984. Epub 2016 Jan 6.
2
Corrections for multiple comparisons in voxel-based lesion-symptom mapping.
Neuropsychologia. 2018 Jul 1;115:112-123. doi: 10.1016/j.neuropsychologia.2017.08.025. Epub 2017 Aug 26.
3
Brain regions essential for word comprehension: Drawing inferences from patients.
Ann Neurol. 2017 Jun;81(6):759-768. doi: 10.1002/ana.24941. Epub 2017 Jun 2.
4
White Matter Correlates of Auditory Comprehension Outcomes in Chronic Post-Stroke Aphasia.
Front Neurol. 2017 Feb 22;8:54. doi: 10.3389/fneur.2017.00054. eCollection 2017.
5
Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.
Neurorehabil Neural Repair. 2017 May;31(5):442-450. doi: 10.1177/1545968316688797. Epub 2017 Jan 30.
6
Ten problems and solutions when predicting individual outcome from lesion site after stroke.
Neuroimage. 2017 Jan 15;145(Pt B):200-208. doi: 10.1016/j.neuroimage.2016.08.006. Epub 2016 Aug 5.
7
Automated segmentation of chronic stroke lesions using LINDA: Lesion identification with neighborhood data analysis.
Hum Brain Mapp. 2016 Apr;37(4):1405-21. doi: 10.1002/hbm.23110. Epub 2016 Jan 12.
8
Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.
Brain. 2016 Jan;139(Pt 1):227-41. doi: 10.1093/brain/awv323. Epub 2015 Oct 31.
9
The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia.
Brain. 2015 Aug;138(Pt 8):2423-37. doi: 10.1093/brain/awv154. Epub 2015 Jun 25.
10
Neural organization of spoken language revealed by lesion-symptom mapping.
Nat Commun. 2015 Apr 16;6:6762. doi: 10.1038/ncomms7762.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验